Getting
Started with
REST

REST API

~.

el Developer Guide

A \iea Solution

Cybersource Contact Information
For general information about our company, products, and services, go to https:/www.cybersource.com.

For sales questions about any Cybersource service, email sales@cybersource.com or call 650-432-7350 or 888-330-2300 (toll free in
the United States).

For support information about any Cybersource service, visit the Support Center: https://www.cybersource.com/support

Copyright

© 2020. Cybersource Corporation. All rights reserved. Cybersource Corporation (“Cybersource”) furnishes this document and the
software described in this document under the applicable agreement between the reader of this document (“You”) and Cybersource
("Agreement”). You may use this document and/or software only in accordance with the terms of the Agreement. Except as expressly
set forth in the Agreement, the information contained in this document is subject to change without notice and therefore should not
be interpreted in any way as a guarantee or warranty by Cybersource. Cybersource assumes no responsibility or liability for any errors
that may appear in this document. The copyrighted software that accompanies this document is licensed to You for use only in strict
accordance with the Agreement. You should read the Agreement carefully before using the software. Except as permitted by the
Agreement, You may not reproduce any part of this document, store this document in a retrieval system, or transmit this document, in
any form or by any means, electronic, mechanical, recording, or otherwise, without the prior written consent of Cybersource.

Restricted Rights Legends

For Government or defense agencies:Use,duplication, or disclosure by the Government or defense agencies is subject to restrictions
as set forth the Rights in Technical Data and Computer Software clause at DFARS 252.227-7013 and in similar clauses in the FAR and
NASA FAR Supplement.

For civilian agencies: Use, reproduction, or disclosure is subject to restrictions set forth in suparagraphs (a) through (d) of the
Commercial Computer Software Restricted Rights clause at 52.227-19 and the limitations set forth in Cybersource Corporation's
standard commercial agreement for this software. Unpublished rights reserved under the copyright laws of the United States.

Trademarks

Authorize.Net, eCheck.Net, and The Power of Payment are registered trademarks of Cybersource Corporation. Cybersource,
Cybersource Payment Manager, Cybersource Risk Manager, Cybersource Decision Manager, and Cybersource Connect are trademarks
and/or service marks of Cybersource Corporation. Visa, Visa International, Cybersource, the Visa logo, and the Cybersource logo

are the registered trademarks of Visa International in the United States and other countries. All other trademarks, service marks,
registered marks, or registered service marks are the property of their respective owners.

Confidentiality Notice
This document is furnished to you solely in your capacity as a client of Cybersource and as a participant in the Visa payments system.

By accepting this document, you acknowledge that the information contained herein (the “Information”) is confidential and subject
to the confidentiality restrictions contained in Visa's operating regulations and/or other confidentiality agreements, which limity our
use of the Information. You agree to keep the Information confidential and not to use the Information for any purpose other than its
intended purpose and in your capacity as a customer of Cybersource or as a participant in the Visa payments system. The Information
may only be disseminated within your organization on a need-to-know basis to enable your participation in the Visa payments system.
Please be advised that the Information may constitute material non-public information under U.S. federal securities laws and that
purchasing or selling securities of Visa Inc. while being aware of material non-public information would constitute a violation of
applicable U.S. federal securities laws.

Revision

Version: 24.10

https://www.cybersource.com
mailto:sales@cybersource.com
https://www.cybersource.com/support

Contents

Contents

Getting Started With RESTt n e e sme e snn e e nneeean 5
Recent Revisions to This Document............. 5
Overview of Getting Started with REST...........coooiiii e 7
Set Up Your Cybersource ACCOUNT............c.ccoiiiiiiiii e 9
Set Up a JSON Web TOKeN MESSAQE..........c.coiiiiiiiiiiiiicieiccie et 12
Sign Up for a SandboX ACCOUNT........cooiiiiiii e 14
Create a P12 Certificate. ... 15
Create @ P12 File ... 15

Extract the Private Key from the P12 Certificate.............ccccoooiiiiii 20

Test the Shared Secret Key Pair..............ooooiiiiiiiii e 21

Test ENAPOINTS. ..o 24
Construct Messages Using JSON Web TOKENS..........ccccoiiiiiiiiiiiiiiiccee e, 25
Elements of a JSON Web Token Message.............coooiiiiiiiiiiiiiii e 25

Generate a Hash of the Message Body...........ccccooiiiiiiiiiiiii e 26

Generate the Token Header...............co i 26

Generate a Hash of the Claim Set............... 27

Generate a Hash of the Token Header.................cooiiiii 28

Generate the Message BOdY..........oooiiiiiiiiiiiicc e 29

Generate a Token Signature. ... 29

Generate a JSON Web TOKEeN ..o 30

Enable Message-Level ENCryptioNn............oooiiiiiiiiiii e 30
Prerequisites for Message-Level Encryption...........cccccoooiiiiii 31
Message-Level Encryption Using JSON Web Tokens..........c...cccocvveiiiiiiiccccee, 32

GOING LIVE o 36
Create aMerchant ID..........ccoooiiiiii e 36

Activate your Merchant ID............coooiiiiiii i 37
Production ENAPOiNtS......coooiiiii e 38

Set Up HTTP Signature Message..............cociiiiiiiiiiiiiiiii e 39
Sign Up for a SandboX ACCOUNT.........oooiiiiii e 1
Create a Shared Secret Key Pair...........ooooiiii 42
Create a Shared Secret Key Pair............ccoooiiiiiiiii 42

Cybersource Contents 3

Test the Shared Secret Key Pair.............ooooiiiiiiii e 47

TesSt ENAPOINTS. ...ooi e 49
Construct Messages Using HTTP Signature Security...........cccccoooviiiiiiiiiiiiiccc, 50
Elements of an HTTP MESSAQe........cccooviiiiiiiiiiiecce e 50
Generate a Hash of the Message Body............cocooiiiiiiiiiiiiccc e, 50
Generate the Signature Hash.................ccoi 51
Update Header Fields. ..o 53
GOING LIVE. o 54
Create aMerchant ID..........ccoooiiiii e 54
Activate your Merchant ID..........ccooo i o5
Production ENAPOINTS......c.oiiiii e o5

VISA Platform Connect: Specifications and Conditions for Resellers/Partners.................. 56

Getting Started with REST

Getting Started with REST

This section describes how to use this developer guide and where to find further
information.
Visit the Cybersource documentation hub to find additional technical documentation.

Audience and Purpose This guide provides information about how
to sign up for a sandbox account and set up
the Cybersource REST API.

Customer Support For support information about any service,
visit the Support Center:
http./support.visaacceptance.com

Recent Revisions to This Document

2410

Fixed error in the JWE token for message level encryption (MLE). See Message-Level
Encryption Using JSON Web Tokens on page 32.

24.09
Fixed signature header parameter "keyid" typo. See Update Header Fields on page 53.

24.08

Removed support for message level encryption (MLE) when setting up an HTTP signature
message. See Set Up HTTP Signature Message on page 39.

24.07

This update contains editorial changes.

Cybersource Getting Started with REST

https://developer.cybersource.com/docs.html
https://support.visaacceptance.com/

Getting Started with REST

24.06

The guide has undergone a major reorganization.

24.05

Corrected typo.

24.04
Updated JSON Web Token Construction

Minor update to Message Level Encryption

24.03

Update token signature to use the Key ID
(kid).

Added Message Level Encryption

24.02

Updated the creating validation string
example for generating an HTTP signature
hash using the \n newline switch. For more
information, see Construct Messages Using
HTTP Signature Security on page 50.

Updated the Constructing Messages Using
JSON Web Tokens Section.

Added note to Enabling MLE Encryption
about the P12 certificate.

Replaced x5¢ signature with kid when
creating a token signature.

Message Level Encryption (MLE) was added
to the guide. See Construct Messages
Using HTTP Signature Security on page

50

Updated the link to the IETF HTTP Working Group website. See Construct Messages Using

HTTP Signature Security on page 50.

24.01

Message Elements

Cybersource

Added the message elements required to
send a successful message. See Elements
of a JSON Web Token Message on page
25

Getting Started with REST

Overview of Getting Started with REST

Overview of Getting Started

with REST

To get started using the Cybersource payment API, you must first set up your

payment processing system to be REST compliant. Cybersource uses the REST, or
(REpresentational State Transfer), architecture for developing web services. REST
enables communication between a client and server using HTTP protocols.

This guide explains how to set up secure communications between your client and server

using one of these methods:

JSON Web Token

HTTP Signature

Cybersource

JSON Web Tokens (JWTs) are digitally
signed JSON objects based on the open
standard RFC 7519. These tokens provide
a compact, self-contained method for
securely transmitting information between
parties. These tokens are signed with an
RSA-encoded public/private key pair. The
signature is calculated using the header
and body, which enables the receiver to
validate that the content has not been
tampered with. Token-based applications
are best for applications that use browser
and mobile clients.

Each request is digitally signed, or the
entire request is digitally hashed using

a private key. Both the client and server
will have the same shared secret, which
enables each request to be validated on
either end. If the request transmission is
compromised, the attacker cannot change
the request or act as a user because they
do not have the secret. HTTP signatures
can be used only with APl requests. They

Overview of Getting Started with REST

https://datatracker.ietf.org/doc/html/rfc7519

Overview of Getting Started with REST

cannot be used in browser or mobile
applications.

Secure Communication Requirements

REST-compliant machines communicate with each other using stateless messaging.
Stateless messaging is a loosely coupled connection between a client and server,

where each message is self-contained. This connection enables the client and server to
communicate without first establishing a communication channel and without managing
the state between systems.

To ensure secure communications between the client and server, you must provide these
security measures:

Sender Authentication: A receiver needs to know that a message came from a trusted
entity.

Message Encryption: By encrypting the message before transmission and decrypting
the message when received, you prevent man-in-the-middle attacks.

Key Features of REST

Client/Server model: Clients and servers are independent from each other, enabling
portability and scalability.

Stateless Communication: Each request is independent.

Uniform Interface: Architecture is simplified through uniform standards.

Components of REST

A REST message consists of these four components:

Endpoint: The endpoint is a Uniform Resource |dentifier (URI) that shows where and
how to find the resource on the internet. For example, to test an authorization request,
you can send the request to this endpoint: https://apitest.cybersource.com/pts/v2/
payments.

HTTP Method: The method is the action performed by the resource. There are four
basic HTTP methods:

POST: Create a resource.

GET: Retrieve a resource.

PATCH: Modify a resource.

DELETE: Delete a resource.
Headers: The header is a collection of fields and their associated values. It provides
information about the message to the receiver. Think of it as metadata about the
message. The header also contains authentication information that indicates that the
message is legitimate.
Body: The request in JSON format.

Cybersource Overview of Getting Started with REST

Set Up Your Cybersource Account

Set Up Your Cybersource
Account

This overview lists the tasks you will need to complete in order to set up your Cybersource
account for sending and receiving REST APl messages using either JSON Web Token
messaging or HTTP Signature messaging.

Cybersource Set Up Your Cybersource Account 9

Set Up Your Cybersource Account

O
0—)

[Register an acoount
Utee JEOMN Web tokens Lo sl up Llsg HTTP signature security Lo
SECuUre cCommunication: ik S0 LR secure communication

? Create P12 Key] ? Create asecret pair key]
B Construct massaoe] ? Construct messame with]

l_ with J50N Web Tokens HTTF signature security
;! |
0— &
(Optional) Create Message
lavelencryption (MLE)

82— ©
? { 0 bive

Enabling REST Workflow

1. Sign up and register a sandbox account.
2. Obtain security keys for either:

- JWT message security uses a P12 certificate. See Set Up a JSON Web Token Message
on page 12.

Cybersource Set Up Your Cybersource Account 10

Set Up Your Cybersource Account

HTTP Signature message security uses a key pair. See Set Up HTTP Signature
Message on page 39.

3. Configure your messaging.
4. (Optional) Enable message-level encryption (MLE) for JWT message security.
5. Go live by signing up for a production account.

Cybersource Set Up Your Cybersource Account

"

Set Up a JSON Web Token Message

Set Up a JSON Web Token
Message

Setting up your JSON web token message requires you to complete these tasks:

Cybersource Set Up a JSON Web Token Message

12

Set Up a JSON Web Token Message

| I S T

Registar an account

&

.

Create a P12 certificate

-

B

Construct a MESSIEE LISING
JEON weh Boken g

-

u_ | I

(Optional) Enable
message-level encryption

G0 live

E'y w toSet Up JSON Web Token Messs"%gmg JSON Web Token Message

ersource 13

1. Sign up and register a Cybersource Business Center sandbox account. See Sign Up for

O~ 1Y - A L .. oA

Set Up a JSON Web Token Message

2. Create a P12 certificate. See Create a P12 Certificate on page 15.

3. Construct a message using a JSON web token. See Construct Messages Using JSON
Web Tokens on page 25.

4. (Optional) Enable the optional message-level encryption (MLE) feature. See Enable
Message-Level Encryption on page 30.

5. Go live. See Going Live on page 54.

Sign Up for a Sandbox Account

The first step to set up your account is to sign up for a sandbox account. From this
account you can obtain your security keys and test your implementation.
Follow these steps to sign up for a sandbox account:

1. Go to the Cybersource Developer Center sandbox account sign up page:
https://developer.cybersource.com/hello-world/sandbox.html|

2. Enter your information into the sandbox account form and click Create Account.

8/
Sandbox L

account sign 7
" Il

3. Go to your email and find a message titled: Merchant Registration Details. Click the Set

up your username and password now link.
Your browser opens the New User Sign Up wizard.

4. Enter the Organization ID and Contact email you supplied previously. Follow the wizard
pages to add your name, a username, and a password.

5. Log in to the Business Center.
When you log in for the first time, you will be asked to verify your identity through a
system-generated email to your email account.

Cybersource Set Up a JSON Web Token Message

14

https://developer.cybersource.com/hello-world/sandbox.html

Set Up a JSON Web Token Message

6. Check your email for a message titled: Cybersource Identification Code. A passcode is

included in the message.

7. Enter the passcode on the Verify your Identity page.
You should be directed to the Business Center home page.
You have successfully signed up for a sandbox account.

Create a P12 Certificate

A P12 certificate and its private key are used with JSON Web Token message security.
To create a P12 certificate, you must download a .p12 file from the Business Center and
extract its private key.

Create a P12 File

Follow these steps to create a .p12 file if you are using JSON Web Tokens to secure
communication.

1. Login to the Business Center:
https://businesscentertest.cybersource.com

’ =
On the left navigation panel, navigate to Payment Configuration > Key
Management.

Cybersource Set Up a JSON Web Token Message

15

https://businesscentertest.cybersource.com/ebc2/

Set Up a JSON Web Token Message

Q Dashboard

Virtual Terminal

Transaction Management

Decision Manager

Tools

Reports

Analytics

Payment Configuration

Digital Payment Solutions

Payer Authentication Configuration

Key Management h E

Secure Acceptance Settings

Webhook Settings

3. Click + Generate key.

Cybersource

Set Up a JSON Web Token Message

Set Up a JSON Web Token Message

Key Management

* = Required
Search Filters
Key Type Created At
REST-Shared Secret N ‘ Last 6 Months (GMT) v ‘ I

Applied Filters: Key Type: REST-Shared Secret, Created At: Last 6 Mont

4. Under REST APIs, select REST - Certificate and then click Generate key.

Cybersource Set Up a JSON Web Token Message 17

Set Up a JSON Web Token Message

Create Key

Key Types

Select a key type from the options below.

Recommended Key Types

REST APls

The REST APl is our latest solution for developing and deploying solution
Details for REST APls

(O REST - Shared Secret

{ (@ IREST - Certificate « n

° J

Click Download key L—.

Cybersource Set Up a JSON Web Token Message 18

Set Up a JSON Web Token Message

REST API Certificate Key

@ Information: Once finished your key will be displayed on the Key M

Key Configuration

Certificate uses a PKCS12 key file with the .p12 extension to digitally si
message to us.

To create and activate a new certificate, click Download Key. Click on t
prompted to either save or open the file, select open. Follow the prom

Note: Be sure to store the key in a safe location. If you do not protect:
compromised.

Download key IL h E

6. Create a password for the certificate by entering the password into the New Password
and Confirm Password fields, and then click Generate key.

Cybersource Set Up a JSON Web Token Message 19

Set Up a JSON Web Token Message

Set a Password

Set a password to generate key. This password will be
used to open the downloaded key file and in your API
implementation.

@ Information: Password is not stored
and cannot be changed. If you forget
this password, you will not be able to
open the key file.

New Password *

{|select or enter an option ® |

+ At least 8 characters long

* At least one upper-case letter

+ At least one lower-case letter

* At least one special character: @$!%*76&
+ At least one numeric character

* Password should not contain merchant Id

Confirm Password *

Select or enter an option @ ‘

The .p12 file is downloaded to your desktop.

When you generate one or more keys, you can view the keys on the Key Management page.

Extract the Private Key from the P12 Certificate

When you have your P12 certificate, you can extract the private key from the certificate.
Use this key to sign your header when sending an APl message. Follow these steps to
automate the extraction of your private key.

E<|=J Important

Cybersource Set Up a JSON Web Token Message 20

Set Up a JSON Web Token Message

If you are using the SDK to establish communication, you do not need to extract
the private key from the P12 certificate.

Prerequisite
You must have a tool such as OpenSSL installed on your system.

Extract the Private Key

Follow these steps to extract the private key using OpenSSL.:

1. Open the command-line tool and navigate to the directory that contains the P12
certificate.

2. Enter this command:
openssl pkcsl2 -in [certificate name] -nodes -nocerts -out [private key name]

3. Enter the password for the certificate.
The password is set when creating the P12 certificate in the Business Center.

The new certificate will be added to the directory using the private key name you supplied
in Step 2.

Test the Shared Secret Key Pair

After creating your key certificate, you must test it to verify that your key can successfully
process APl requests. This task explains how to test and validate your key pair using the
developer center and the Business Center.

1. Go to the developer center's APl Reference:
https://developer.cybersource.com/api-reference-assets/
index.html#payments_payments_static-home-section

2. On the left navigation panel, click APl Endpoints & Authentication.

Under Authentication and Sandbox Credentials, set the Authentication Type drop-down
menu to Json Web Token.

w

. Enter your organization ID in the Organization field.
. Enter your Password in the Password field.
. Click Browse and upload your p12 certificate from your desktop.

Click Update Credentials.
A confirmation message displays stating that your credentials are successfully updated.

N o oM~

Cybersource Set Up a JSON Web Token Message 21

https://developer.cybersource.com/api-reference-assets/index.html#payments_payments_static-home-section
https://developer.cybersource.com/api-reference-assets/index.html#payments_payments_static-home-section
https://developer.cybersource.com/api-reference-assets/index.html#static-api-endpoints-section

Set Up a JSON Web Token Message

AP| Endpoints & Authentication h:ﬂ

Authentication and Sandbox Cre

Payments

@ Success: Succesfully updatec
Transaction Batches

Token Management There are two forms of authentica

key. Authorization Headers are ger

Flex Microform For your convenience, you can quic

Authentication lype

Risk Management
Json Web Token

Payer Authentication

Please enter the password, which

£ uts .
Payout You are using your own sandbox ac

S— - Organization * _
Recurring Billing Subscriptions « -1 gaiileation

testlebe
Transaction Details

Transaction Search

8. On the developer center's left navigation panel, navigate to Payments > POST Process a
Payment.

9. Under Request: Live Console click Send.

Cybersource Set Up a JSON Web Token Message 22

Set Up a JSON Web Token Message

Home

APl Endpoints & Authentication

Payments

Payments

POST Process a Payment

PATCH Increment an
Authorization

POST Check a Payment
Status

POST Create a Payment
Order Request

POST Create Alternative
Payments Sessions
Request

PATCH Update Alternative
Payments Sessions
Request

Reversal

POST Process an
Authorization Reversal

POST Timeout Reversal

Capture

POST Capture a Payment

oken

@ Required fields are denoted
optional, however if providec

*

Request Builder

Configuratis

reconciliationld @

pausedRequestld C

transactionid @

comments @

partner

originalTransac

developerld 0

solutionld @

thirdPartyCerti

applicaﬂnnNameG

applicationVersion'

applicationUser 0

processinginformation

actinnList@

enableEscrowOptic

actionTokenTypes (

hihSc:urc:ez?@

Message

m canti ires @

Set Up a JSON Web Token Message

A message displays confirming that your request was successful with the status code

201.

@ Success: HTTP Status Code 201

10.Log in to the Business Center:
https://businesscentertest.cybersource.com

1.

:g Transaction Management A

Transactions _

Transaction by Phase

Secure Acceptance

Decision Manager

Test Endpoints

=1
On the left navigation panel, navigate to Transaction Management > Transactions.

12.Under Search Results, verify that the request ID from the test authorization response is

listed in the Request ID column.
If the test authorization was successful, a success message is present in the

corresponding Applications column.

Search Results 1- 8 of 8 sh

Jun12 2024 02:34:46 PM G

When testing an APl outside of the Developer Center's APl Reference sandbox, send your

test APl request messages to the test server:
https://apitest.cybersource.com

For example, to test an authorization request, you can send the request to this endpoint:

https://apitest.cybersource.com/pts/v2/payments

Cybersource Set Up a JSON Web Token Message 24

https://businesscentertest.cybersource.com/ebc2/

Set Up a JSON Web Token Message

Construct Messages Using JSON Web
Tokens

Follow these steps to construct messages using JWTs:

1. Generate a hash of the message body. See Generate a Hash of the Message Body on
page 26.

2. Populate the header values. See Generate the Token Header on page 26.

3. Generate a hash of the claim set. See Generate a Hash of the Claim Set on page 27.

4. Generate a hash of the token header. See Generate a Hash of the Token Header on
page 28.

5. Generate a token signature hash. See Generate a Token Signature on page 29.

6. Populate the signature header field. See Update Header Fields on page 53.

Elements of a JSON Web Token Message

A JWT Message is built with these elements:

Headers
Your message header must include these header fields:

Header Fields

Header Field Description

v-c-merchant-id Your Cybersource organization ID.

Date The date of the transaction in the RFC1123 format. (Thu, 18

Jul 2019 00:18:03 GMT)

Content-Type Also known as the Multipurpose Internet Mail Extension (MIME
) type, this identifies the media or file type of the resourc
e. (application/json)

kid The ID of the key used to digitally sign the JWT. The Key ID (kid
) must be registered with the authorizing server.

Host The transaction endpoint. (https://api.cybersource.com)

alg Algorithm used to sign the token header.

Body

The message body. For more information on setting up the body, see Generate a Hash of
the Message Body on page 26.

Cybersource Set Up a JSON Web Token Message 25

Set Up a JSON Web Token Message

Generate a Hash of the Message Body

Generate a Base64-encoded SHA-256 hash of the message, and place the hash in the
header's digest field. This hash is used to validate the integrity of the message at the
receiving end.

Follow these steps to generate the hash:

1. Generate the SHA-256 hash of the JSON payload (body of the message).
2. Encode the hashed string to Base64.

3. Add the message body hash to the digest payload field.

4. Add the hash algorithm used to the digestAlgorithm payload field.

Example: Digest Header Field

digest: RBNvolWzZ40RRqOW9+hknpT7T81f536DEMBgOhyq/40=

Example: DigestAlgorithm Header Field

digestAlgorithm: SHA-256

Code Example: Creating a Message Hash Using C#

public static string GenerateDigest() {

var digest = "";

var bodyText = "{ your JSON payload }";

using (var sha256hash = SHA256.Create()) {
byte[] payloadBytes = sha256hash

.ComputeHash(Encoding.UTF8.GetBytes(bodyText));

digest = Convert.ToBase64String(payloadBytes);
digest = digest;

}

return digest;

}

Code Example: Creating a Message Using Java

public static String GenerateDigest() throws NoSuchAlgorithmException {
String bodyText = "{ your JSON payload }";
MessageDigest md = MessageDigest.getInstance("SHA-256");
md.update(bodyText.getBytes(StandardCharsets.UTF_8));
byte[] digest = md.digest();
return Base64.getEncoder().encodeToString(digest);

Generate the Token Header

The token header is encrypted with a URL safe base64 algorithm. These three header
fields must be included in the header.

Cybersource Set Up a JSON Web Token Message

26

Set Up a JSON Web Token Message

Token Headers

Token Header Field Description

kid The ID of the key used to digitally sign the JWT.

alg Algorithm used to sign the token header.

v-c-merchant-id Merchant ID used in the request transaction. To obtain the
merchant ID, see Sign Up for a Sandbox Account on page
41.

Token Header

eyJ2LWMtbWVyY2hhbnQtaWQiOiJtZXJjaGFudE1ELiwiYWxnIjoiULIMyNTYiLCJraWQiOiI3MDc4NjMzMjg1lMjUwMTc3MDQxXNDk5In@

Generating the Token Header with Python

Encode the header data and then remove any padding added during the encryption
process.

import base64

open file in binary mode

data = b'{"v-c-merchant-id":"merchantID""alg":"RS256"'kid":"7078633285250177041499"}'
encoded = base64.urlsafe_b64encode(data)

stripped = encoded.decode(‘ascii').strip('=")

print(stripped)

Generate a Hash of the Claim Set

Generate a Baseb64-encoded SHA-256 hash of these header fields:

Headers
Header Field Description
|
iat The date and time of the message origin. Date formatting is
defined by RFC 7231, Section 7.1.1.1.
digest A Base64 encoded hash of the message payload. The
digest field is not included in a GET request.
digestAlgorithm The algorithm used to hash the message payload. The
message payload should be hashed using the SHA-256 al
gorithm. The digestAlgorithm field is not included in a
GET request.

Follow these steps to generate the hash:

1. Generate the SHA-256 hash of the fields in JSON format.
2. Encode the hashed string to Base64.

Cybersource Set Up a JSON Web Token Message 27

https://datatracker.ietf.org/doc/html/rfc7231#section-7.1.1.1

Set Up a JSON Web Token Message

3. Add the message body hash to the digest header field.
Creating a Message Hash Using Command Line Tools

Generate the SHA-256 hash using the shasum tool.

echo -n "{"iat":"Thur, 15 June 2017 08:12:31 GMT""digest":"tP7hDajF4f6q@ysBQCHgef5K/PBq8iMASVI1EARpSt1=",

"digestAlgorithm":"SHA-256"}" | shasum -a 256

Base64 Encoding a Message Hash Using Command Line Tools

Generate the SHA-256 hash using the base64 tool.
echo -n "5995a4f27b4b9256a94cf54489a9ef691d8dc8a590d322780d3b202cfa2f@78f" | base64
Add the message body hash to the digest header field

NTKkSNWEQZI3YjRiOTIINmMESNGNmNTQ@OD1hOWVmNjkxZDhkYzhhNTkwZDMyMjc4MGQzY{iIwMmNmYTJmMDc4Zg==

Generate a Hash of the Token Header
Generate a Baseb64-encoded SHA-256 hash of these header fields:

Token Headers

Token Header Field Description

kid The ID of the key used to digitally sign the JWT.
alg Algorithm used to sign the token header.
v-c-merchant-id Merchant ID used in the request transaction.

Follow these steps to generate the hash:

1. Generate the SHA-256 hash of the fields in JSON format.
2. Encode the hashed string to Base64.

Create a Message Hash Using the shasum Command Line Tool
echo -n "{"kid":"cc34c0a0-bd5a-4a3c-ab0d-a2a/db7643df",
"alg":"RS256"'v-c-merchant-id":"merchant_id"}"
| shasum -a 256

Create a Message Hash Using the base64 Command Line Tool

echo -n "a9953cdcal9433aeb5eclc4eb@dafd41df6de4d20cd47cbace3c316alac6d2008" | base64

Example: Token Header Hash

NTc3N2R1IOTAYyZWEWNWUBNWM2YTBKNTI4Mjg@YTImOTVIZGYxYWJIMzBiNzk50TglYzEzMjNiMDkzMzcOMWEWNA==

Cybersource Set Up a JSON Web Token Message

28

Set Up a JSON Web Token Message

Generate the Message Body

Encode the message body (payload) using URL safe Base64 encryption. At a minimum, the
body should include these fields:

Message Body Fields
Message Body Field Description
____________________________|
digest A base64 encoded SHA-256 has of the claim set.
digestAlgorithm Algorithm used to sign the JWT.
iat Time the JWT was issued.

Follow these steps to generate the hash:

1. Generate the SHA-256 hash of the JSON payload (body of the message).
2. Encode the hashed string to Base64.

3. Add the message body hash to the digest header field.

4. Add the hash algorithm used to the digestAlgorithm header field.

Encrypted Message Body

Line break added for readability.
digest: eyJkaWdlc3Qi0iJSQk52bzFXelo0blJScTBXOStoa25wVDdUOEIMNTM2REVNQmc5aH1xL.zRvPSIsImRpZ
2VzdEFsZ29yaXRobSIGIINIQSOyNTYiLCJpYXQiOiIlyMDIQLTAOLTAIVDE20O{I10jE4L{I10V0ifQ

Encrypting Message Body Using Python

Generate the SHA-256 hash using the shasum tool. Line break on line three added for
readability.

import base64

data = b'{"digest":"RBNvo1WzZ40RRqOW9+hknpT7T8If536DEMBg9hyq/40=""digestAlgorithm":"SHA-256"
"iat":"2024-04-05T716:25:18.2597"}'

encode = base64.urlsafe_b64encode(data)

stripped = encode.decode(‘ascii').strip(‘'=")

print(stripped)

Generate a Token Signature

You can now build the JSON token signature. The token signature is made up of the JWT
header and claim set hashes in the following format, and encrypted with the private key.
[Token Header].[Claim Set]

Follow these steps to generate the signature:

1. Concatenate the header and claim set hash strings with a period (.) separating the
hashes:
[Token Header].[Claim Set].

2. Generate an encoded version of the text file using your private key.

Cybersource Set Up a JSON Web Token Message 29

Set Up a JSON Web Token Message

3. Base64 encode the signature output.

Example: Token Signature Hash

YigwNGIxOTMxMzQ2NzhlYjdiMDdhMWZmYjZiYzUzNz1iMTkSNzFmNjAzZNWRmMThINzk@ON2NhY2UQYTEwNzYyYQ

Code Example: Encoding the Signature File Using OpenSSL

Encode the signature file using the openssl tool.
openssl rsautl -encrypt -inkey publickey.key -pubin -in [signature-text-file]

> [signature-encoded-file]

Code Example: Base64 Encoding the Signature File Using the

Command Line
Encode the signature file using the openssl tool and remove any padding.

base64 -i [signature-encoded-file]

Generate a JSON Web Token

You can now build the JWT. The JWT is made up of the token header Base64 encoded hash,

the payload Base64 encoded hash, and the JWT signature in the following format:
[Token Header].[Payload].[Signature]

To generate the JWT, concatenate the header, payload, and signature strings with a
period (.) separating the hashes:

[[Token Header].[Payload].[Signhature].

Example: JSON Web Token

eyJ2LWMtbWVyY2hhbnQtaWQiOiJtZXJjaGFudE1ETiwiYWxnIjoiUIMyNTYiLCJraWQiOiI3M
Dc4NjMzMjgIMjUwMTc3MDQxNDk5IN0.eyJkaWdlc3Qi0iJSQk52bzFXelo@blJScTBXOStoa2
5wVDdUOEImNTM2REVNQmMc5aH1xLzRvPSISImRpZ2VzdEFsZ29yaXRobSIGIINIQSQyNTYiLCJ
pYXQiOiIyMDIQLTAQLTA1VDE20iI10jE4LiI10VoifQ.YigwNGIxOTMxMzQ2Nzh1YidiMDdhM
WZmYjZiYzUzNz1iMTkSNzFmNjAzZNWRmMThINzkON2NhY2UQYTEWNZYyYQ

Enable Message-Level Encryption

Eljn Important

This feature is in the pilot phase. To use message-level encryption, contact your
sales representative.

Cybersource Set Up a JSON Web Token Message

30

Set Up a JSON Web Token Message

There are additional tasks you must complete before you can enable message-level
encryption. For more information, see Prerequisites for Message-Level Encryption
on page 31.

Message-Level Encryption (MLE) enables you to store information or communicate with
other parties while helping to prevent uninvolved parties from understanding the stored
information. MLE is optional and supported only for payments services.

MLE provides enhanced security for message payload by using an asymmetric encryption
technique (public-key cryptography). The message encryption is implemented with
symmetric encryption using Advanced Encryption Standard (AES), Galois Counter Mode
(GCM) with 256-bit key size. The encryption of keys is supported using RSA Optimal
Asymmetric Encryption Padding (OAEP) with 2048-bit key size. The encryption service is
based on JSSON Web Encryption (JWE), works on top of SSL and requires separate key-
pairs for request and response legs of the transaction.

MLE is required for APIs that primarily deal with sensitive transaction data, both financial
and non-financial. These are the types of sensitive transaction data:

Personal identification information (PII)
Personal account number (PAN)
Personal account information (PAI)

MLE is supported when using JSON web tokens. For more information, see Message-Level
Encryption Using JSON Web Tokens on page 32.

Each of these authentication schemes uses an encrypted payload, called the JWE. A JWE
token has these five components, with each component separated by a period (.):

JOSE header containing four elements:

"alg": "RSA-OAEP-256", //The algorithm used to encrypt the CEK
"enc": "A256GCM", //The algorithm used to encrypt the message
"iat": "1702493653" //The current timestamp in milliseconds
"kid": "keyId" //The serial number of shared public cert for encryption of CEK
JWE encrypted key
JWE initialization vector
JWE additional authentication data (AAD)
JWE ciphertext and authentication tag

Prerequisites for Message-Level Encryption
Before enabling message-level encryption (MLE), you must complete these requirements:

1. Sign the pilot agreement for using MLE.
2. Confirm that the APIs you are integrating to support MLE.

3. Retrieve the Cybersource public key from either the Account Manager or Client
Executive services in the Business Center.

4. Ensure that client-side systems are modified to read the public key and encrypt the API
payload.

Cybersource Set Up a JSON Web Token Message 31

Set Up a JSON Web Token Message

Message-Level Encryption Using JSON Web Tokens

To use message-level encryption (MLE) with JSSON Web Tokens (JWT), you must generate
the JWT and send it as part of the HTTP header. The payload is encrypted with the dynamic
Content Encryption key (CEK) that is generated for each transaction. The serialized
encrypted payload, the JWE, is passed as the request body.

1. Use the required Maven dependency:

<dependency>
<groupId>com.nimbusds</groupld>
<artifactId>nimbus-jose-jwt</artifactId>
<version>9.0</version>

</dependency>

2. Prepare the APl request payload. This example is hard-coded for demonstration.

String jsonMsg = "{\"clientReferencelnformation\":{\"code\":\"TC50171_3\"},\"processingInformation\":
{\"commercelndicator\":\"internet\"},\"aggregatorInformation\":{\"subMerchant\":{\"cardAcceptorID
\":\"1234567890\"\"country\":\"US\"\"phoneNumber\":\"650-432-0000\"\"address1\":\"900MetroCenter
\"\"postalCode\":\"94404-2775\" \"1locality\":\"FosterCity\",\"name\":\"VisaInc\"\"administrativeArea
\":\"CA\"\"region\":\"PEN\"\"email\":\test@cybs.com\},\"name\":\"V-Internatio\"\"aggregatorID\":
\"123456789\"},\"orderInformation\":{\"billTo\":{\"country\":\"US\"\"lastName\":\"VDP\"\"address2\":
\"Address2\"\"address1\":\"201S.DivisionSt.\"\"postalCode\":\"48104-2201\" \"1locality\":\"AnnArbor
\"\"administrativeArea\":\"MI\"\"firstName\":\"RTS\"\"phoneNumber\":\"999999999\"\"district\":
\"MI\"\"buildingNumber\":\"123\" \"company\":\"Visa\"\"email\":\test@cybs.com\},\"amountDetails\":
{\"totalAmount\":\"102.21\"\"currency\":\"USD\"}},\"paymentInformation\":{\"card\":{\"expirationYear\":
\"2031\"\"number\":\"5555555555554444\"\"securityCode\":\"123\" \"expirationMonth\":\"12\" \"type\":
\"002\"}}}";

3. Read the merchant p12 file.
The P12 file should have been created when you set up your test account. See Create a
P12 File on page 15.

ClassLoader classLoader = Main.class.getClassLoader();

KeyStore merchantKeyStore = KeyStore.getInstance("PKCS12", new BouncyCastleProvider());
merchantKeyStore.load(classLoader.getResourceAsStream("test_merchant.pl2"),
"test_merchant"toCharArray());

String merchantKeyAlias = null;

Enumeration enumKeyStore = merchantKeyStore.aliases();

RSAPrivateKey rsaPrivateKey = null;

RSAPrivateKey rsaPrivateKey_SJC = null;

X509Certificate x509Certificate = null;

X509Certificate x5609Certificate_SJC = null;

4. Loop through the Java KeyStore to extract the private key from merchant p12 file
and extract the public key for Cybersource. You must use the Cybersource SJC
(CyberSource_SJC_US) to encrypt the payload.

while (enumKeyStore.hasMoreElements()) {
merchantKeyAlias = (String) enumKeyStore.nextElement();
if (merchantKeyAlias.contains(“test_merchant")) {
KeyStore.PrivateKeyEntry keyEntry = (KeyStore.PrivateKeyEntry) merchantKeyStore.getEntry(
merchantKeyAlias, new KeyStore.PasswordProtection(

Cybersource Set Up a JSON Web Token Message 32

Set Up a JSON Web Token Message

"test_merchant"toCharArray()));
//Extract the merchant certificate to sign the payload.
xb09Certificate = (X609Certificate) keyEntry.getCertificate();
rsaPrivateKey = (RSAPrivateKey) keyEntry.getPrivateKey();

//Extract the merchant certificate to encrypt the payload.
} else if (merchantKeyAlias.contains("CyberSource_SJC_US")) {
KeyStore.PrivateKeyEntry keyEntry = (KeyStore.PrivateKeyEntry) merchantKeyStore.getEntry(
merchantKeyAlias, new KeyStore.PasswordProtection(
"test_merchant"toCharArray()));

//Store the public key from the certificate.

xb09Certificate_SJC = (X509Certificate) keyEntry.getCertificate();

//rsaPrivateKey_SJC = (RSAPrivateKey) keyEntry.getPrivateKey();
}
}

5. Update the custom headers to include "iat" with the current timestamp:

Map<String, Object> customHeaders = new HashMap<String, Object>();
customHeaders.put(“iat", Instant.now().getEpochSecond());

6. Generate the JWE token (the encrypted payload) using the supported algorithm and
the Cybersource public certificate. Include the JSON payload as the input.

String jweToken = encryptAttributeWithAlgo(jsonMsg, x509Certificate_SJC,
JWEAlgorithm.RSA_OAEP_256, EncryptionMethod.256GCM, customHeaders);

public static String encryptAttributeWithAlgo(String content, X6@09Certificate x509Certificate,

JWEAlgorithm algo, EncryptionMethod encryptionMethod, Map<String, Object> customHeaders) {
if (isNullOrEmpty(content)) {

System.out.println("empty or null content");
return null;

} else if (xb09Certificate == null) {

System.out.println("public certificate is null");
return null;

}
String serialNumber = extractSerialNumberFromDN(x509Certificate);
JWEObject jweObject = new JWEObject(

new JWEHeader.Builder(algo, encryptionMethod)

.contentType("JWT") // required to signal nested JWT
.keyID(serialNumber)

.customParams(customHeaders)
.build(),
new Payload(content));

jweObject = encrypt(jweObject, x609Certificate);
return jweObject == null ? null : serializeToken(jweObject);
}
public static boolean isNullOrEmpty(String string) {
return (string == null || string.trim().length() == 0);
}

Cybersource Set Up a JSON Web Token Message

33

Set Up a JSON Web Token Message

7. Build the JSON request body for calling the Cybersource API.

String jsonBody = createJsonString(jweToken);

private static String createJsonString(String jweToken) {
String message;
JSONObiject json = new JSONObject();
json.put("encryptedRequest", jweToken);
return json.toString();

}

8. Generate the body digest to validate that the payload has not been compromised.

String bodyDigest = createBodyDigest(jsonBody);

public static String createBodyDigest(String jsonBody) {

MessageDigest messageDigest = null;

try{
messageDigest = MessageDigest.getInstance(DEFAULT_HASH_ALG);

} catch (NoSuchAlgorithmException €) {
System.out.println("Couldn't instantiate SHA-256 digest " + e.getMessage());
return null;

}

byte[] bodyDigestBytes = messageDigest.digest(jsonBody.getBytes());

return java.util.Base64.getEncoder().encodeToString(bodyDigestBytes);

}

9. Prepare the JWT payload for signature.

JWTPayload jwtPayload = createJWTPayloadClass(bodyDigest);
Map<String, Object> customHeader = new HashMap<String, Object>();
customHeader.put("v-c-merchant-id", "test_merchant");

private static JWTPayload createJWTPayloadClass(String bodyDigest) throws
NoSuchAlgorithmException {
JWTPayload jwtPayload = new JWTPayload();
jwtPayload.setDigest(bodyDigest);
jwtPayload.setDigestAlgorithm("SHA-256");
jwtPayload.setlat(String.valueOf(System.currentTimeMillis()));
return jwtPayload;

}
10.Sign the payload and create the JWT token that is passed in the request header.

String jwsSignature = sign(Json.encode(jwtPayload), rsaPrivateKey, x609Certificate, customHeader);

public static String sign(String content, PrivateKey privateKey, X509Certificate xX509Certificate,
Map<String, ? extends

Object>

customHeaders) {

return serializeToken(signPayload(content, privateKey, x609Certificate, customHeaders));
}

protected static JOSEObject signPayload(String content, PrivateKey privateKey, X509Certificate
x509Certificate,

Cybersource Set Up a JSON Web Token Message

34

Set Up a JSON Web Token Message

Map<String, ? extends Object> customHeaders) {
return signPayload(content, privateKey, x509Certificate, customHeaders, true);
}
protected static JOSEObject signPayload(String content, PrivateKey privateKey, X509Certificate
x509Certificate,
Map<String, ? extends Object> customHeaders, boolean includeKid) {
if (isNullOrEmpty(content) || xX509Certificate == null || privateKey == null) {
System.out.println("empty or null content or Private key or public certificate is null");
return null;

}

String serialNumber = extractSerialNumberFromDN(x509Certificate);
List<Base64> x5cBaseb4List = addCertificateToBase64List(x509Certificate);
if (xbcBase64List.isEmpty()) return null;

RSAPrivateKey rsaPrivateKey = (RSAPrivateKey) privateKey;
Payload payload = new Payload(content);
JWSHeader jwsHeader;
if (includeKid) {
jwsHeader = new JWSHeader.Builder(JWSAlgorithm.RS256)
.customParams((Map<String, Object>) customHeaders)
.keyID(serialNumber)
x509CertChain(x5cBaseb4List)
.build();
} else {
jwsHeader = new JWSHeader.Builder(JWSAlgorithm.RS256)
.customParams((Map<String, Object>) customHeaders)
x509CertChain(x5cBaseb4List)

.build();
}
JWSObiject jwsObject = new JWSObject(jwsHeader, payload);
try {

RSASSASigner signer = new RSASSASigner(rsaPrivateKey, true);
jwsObject.sign(signer);
if (ljwsObject.getState().equals(JWSObject.State.SIGNED)) {
System.out.println("Payload signing failed.");
return null;
}
} catch (JOSEException joseException) {
System.out.println("ERROR_SIGN_AND_ENCRYPT_THE_PAYLOAD" + " " + joseException);
return null;

}

return jwsObject;
}
protected static String extractSerialNumberFromDN(X509Certificate x609Certificate) {
String serialNumber = null;
String serialNumberPrefix = "SERIALNUMBER=";
String principal = x509Certificate.getSubjectDN().getName().toUpperCase();
int beg = principal.indexOf(serialNumberPrefix);
if (beg >= 0) {
int end = principal.indexOf("", beg);
if (end == -1) end = principal.length();
serialNumber = principal.substring(beg + serialNumberPrefix.length(), end);
} else
serialNumber = x609Certificate.getSerialNumber().toString();
return serialNumber;

Cybersource Set Up a JSON Web Token Message

Set Up a JSON Web Token Message

}
11. Send the JWT as the Bearer token in the header and send the JWE as the body.

HTTP Request Header:

Content-Type: application/json

Authorization: Bearer

eyJ2LWMtbWVyY2hhbnQtaWQiOiJtcG9zX3BheW11bnR1Y2gil CJhbGciOiJSUzIINiIISImtpZCI6ImI1wb3NfcGF5bWVudGViaCls]
jphx@dH6jzudxoerkgz3VSMuDt9mDJtn1DnisSTF35NWh6u4TeJqGr3E8oOO0JSX6N32r6XovCXyJyaDm4h2fJOelZc8HcvfSCE5SpMI
_OwWEIAYZfOnZ9FphLQZWnwZ3mku@C6gysv6ISMrI9BlCpWaPbmDeuWBSLexC_UQlcblg

HTTP Request Body:

{"encryptedRequest":"eyJ2L WMtbWVyY2hhbnQtaWQiOiJtcG9zX3BheW11lbnR1Y2gil CJ4ANWMiOlsiTUIJRESUQONBaDJnQXdJQ
GCEaFs15U1_BrtlhQTn9aKijX_-rbYxM-ZXJ1lbpg6CsyAqy63-
MKYPP2BNXjFfP3yUSxes76zH1MaJG0gp681QY85AqGq6mCSrDgWE7NUTWifseRtKMvEu9pMHMxddkz9Xvp6QSTbiEjGZbvD-
xKhhgs@-IupvPDKhxdJSNVPaDiTnFVnYtyOuLZLOFO4Fq2bfi86iGHR|fh9z2q91Gp4uN36kmRHzKLN4WrrSR6D79Z-
FC5bLU4BUrilGQtVSWCWtcxYAIQOhzlw.tuv-9Xt1QuNoPxXV.RRGnkAlchplnGQf-S1XaXEntzGJrEF4EJU-
F6PEx6H3us1APoWAR-26aHdWctNFoGSalNt1ZzidRi3TA-iwpSFkEonSVbe7aVLJeAKggCHNVXT-
eWb89gqTVkQFZiSZCHtIjDUtOMy95sU4MRcCvtrfAPDNnIMudVVASYtAsCZpta_ATl_iS60LBMI57RORa7pO3MxFdLTrk-
FkLSd4JbGokm_JXpH81I1V11lvaMAtyEqGrz1lrQv408zUGbvtvSirF31iiGITEF7QG5rbVn7oTWFAwWzKEKpSZ7J4LpIdiCG6sojeld4
vFVfa-

ua4uh4PNcVKOo3ke4TOgLnVenaEtYW1AS2wIu_tHxW_hdkyPmDI8ceSBgmloRxV3gq8x0S5u-2GNQ9p5Spm2 _NijkqVB8RYup9NFZW
RzJOmOwPF2MZzQ318278TyAGXotYT4QXGJZhnyDMNgHiyyGX7IZt GPRYDpxc1OKko9DLM _r6fWoDLemRhFbi8prnlJpQZbUh98TLF

Going Live

When you are ready to process payments in a live environment, you must transition your
account to a live status with a valid configuration for your chosen payment processor.
When live, your transaction data flows through the production Cybersource gateway, to
your processor, and on to the appropriate payment network.

To transition your account:

1. Sign up for a merchant account.

2. Contact sales to establish a contract with Cybersource that enables you to process
real transactions and receive support.

3. Submit a merchant ID (MID) activation request.

It may take up to three business days to complete a MID activation request.

Create a Merchant ID

The merchant ID (MID) is used to identify you and your transactions and is included in

the header of each transaction request. When you signed up for a sandbox account, you
received a merchant ID for testing purposes. If you choose, you can use that merchant ID
as your production ID.

Follow these steps to sign up for a merchant account in order to create a production MID:

1. Navigate to the Business Center Evaluation Account Sign-up page, enter the required
information, and click Create Account.

Cybersource Set Up a JSON Web Token Message 36

https://www.cybersource.com/en-us/contact-us/sales.html
https://businesscenter.cybersource.com/ebc2/registration/external

Set Up a JSON Web Token Message

Choose your merchant ID name carefully. It cannot be changed. This name is not visible
to your customers.

2. Review your information entered, especially your business email address. Your merchant

ID registration information will be sent to the email entered on this form.
3. Check your email from customer support titled: Cybersource Merchant Evaluation
Account.
This email will include the Organization ID and contact email associated with your MID.
4. Go to your email and find a message titled: Merchant Registration Details. Click the Set
up your username and password now link.
Your browser opens the New User Sign Up wizard.
5. Enter the Organization ID and Contact email you supplied previously. Follow the wizard
pages to add your name, a username, and password.
6. Log into the Business Center.
When you log in for the first time, you will be asked to identify your identity through a
system-generated email that is sent to your email account.
7. Check your email for a message titled: Cybersource ldentification Code.
Note the passcode.
8. Enter the passcode on the Verify your Identity page.
You should be directed to the Business Center home page.

You have successfully created a merchant ID and merchant account.

Activate your Merchant ID

The activation process, also known as going live, transitions your MID and account from
test status to live status, enabling you to process real transactions in production. It may
take up to three business days to complete the MID activation request.

To transition your account complete these tasks:

1. Signinto the Support Center as an administrator.
2. Enter your credentials and log in to your test environment.

’..

W o
cybersource
A Visa Solution

kmsproductionaccount
kenyon_nasifs

Enter your MID in the Organization ID text box.
3. Go to Support Cases > MID Configuration Request. The MID Configuration Request
page should be open.

Cybersource Set Up a JSON Web Token Message

37

https://support.visaacceptance.com/

Set Up a JSON Web Token Message

o

7.
8.
9.

. Select MID Activation.
. In the Description field, enter the Merchant ID that you want to take live.
. Select the processor configuration and enter the name of your processor.

If you are unsure of your processor name, contact your merchant service provider or
your merchant acquiring bank.

Select the environments that this change applies (test or production).
Select Service Enablement and list the products and services that you intend to use.
Select Submit.

Production Endpoints

When sending API request messages using your production account, send your requests
to the production server:

https://api.cybersource.com

For example, to send a live authorization request, you can send the request to this
endpoint:

https://api.cybersource.com/pts/v2/payments

Cybersource Set Up a JSON Web Token Message

38

Set Up HTTP Signature Message

Set Up HTTP Signature
Message

Setting up your HTTP signature message requires you to follow these steps.

Cybersource Set Up HTTP Signature Message

39

Set Up HTTP Signature Message

O
08— M

Register an account

J

Rl

Lreate a shared secret
Kiey pair

J
0— =

Construct a message using
HTTP signature security

l
8- O

G0 live

-

Ll

_

Set Up HTTP Signature Message Workflow

1. Sign up and register a Cybersource Business Center sandbox account. See Sign Up for
a Sandbox Account on page 41.

2. Create a shared secret key. See Create a Shared Secret Key Pair.

3. Construct a message using HTTP signature security. See Construct Messages Using
HTTP Signature Security on page 50.

4. Go live by signing up and registering a Cybersource Business Center production
account. Going Live on page 54.

Cybersource Set Up HTTP Signature Message 40

Set Up HTTP Signature Message

Sign Up for a Sandbox Account

The first step to set up your account is to sign up for a sandbox account. From this
account you can obtain your security keys and test your implementation.
Follow these steps to sign up for a sandbox account:

1. Go to the Cybersource Developer Center sandbox account sign up page:
https://developer.cybersource.com/hello-world/sandbox.html|

2. Enter your information into the sandbox account form and click Create Account.

7
Sandbox ;

account sign =
" il

3. Go to your email and find a message titled: Merchant Registration Details. Click the Set
up your username and password now link.
Your browser opens the New User Sign Up wizard.

4. Enter the Organization ID and Contact email you supplied previously. Follow the wizard
pages to add your name, a username, and a password.

5. Log in to the Business Center.
When you log in for the first time, you will be asked to verify your identity through a
system-generated email to your email account.

6. Check your email for a message titled: Cybersource Identification Code. A passcode is
included in the message.

7. Enter the passcode on the Verify your Identity page.
You should be directed to the Business Center home page.
You have successfully signed up for a sandbox account.

Cybersource Set Up HTTP Signature Message 41

https://developer.cybersource.com/hello-world/sandbox.html

Set Up HTTP Signature Message

Create a Shared Secret Key Pair

Key pairs are used with HTTP Signature message security.

Create a Shared Secret Key Pair
Follow these steps to create a shared secret key pair.

1. Loginto the Business Center:
https://businesscentertest.cybersource.com

’ =
On the left navigation panel, navigate to Payment Configuration > Key
Management.

Cybersource Set Up HTTP Signature Message

42

https://businesscentertest.cybersource.com/ebc2/

Set Up HTTP Signature Message

Q Dashboard

Virtual Terminal

Transaction Management

Decision Manager

Tools

Reports

Analytics

Payment Configuration

Digital Payment Solutions

Payer Authentication Configuration

Key Management h E

Secure Acceptance Settings

Webhook Settings

3. Click + Generate key.

Cybersource

Set Up HTTP Signature Message

43

Set Up HTTP Signature Message

Key Management

* = Required
Search Filters
Key Type Created At
REST-Shared Secret N ‘ Last 6 Months (GMT) v ‘ I

Applied Filters: Key Type: REST-Shared Secret, Created At: Last 6 Mont

4. Under REST APIs, select REST — Shared Secret and then click Generate key.

Cybersource Set Up HTTP Signature Message 44

Set Up HTTP Signature Message

Create Key

Key Types

Select a key type from the options below.

Recommended Key Types

REST APIs

The REST APl is our latest solution for developing and deploying solution
Details for REST APIs

(@ REST - Shared Secret

(O REST - Certificate

The REST API Shared Secret Key page appears.

5. \L
Click Download key L—.
The .pem file is downloaded to your desktop.

Cybersource Set Up HTTP Signature Message 45

Set Up HTTP Signature Message

Key Generation

REST API Shared Secret Key

Key Configuration

Shared APl authenticates using a base-64-encoded transaction key
key you can copy to your clipboard or download as a text file.

Key

65670aad-3d92-48a8-a0c8-7089f11dd360

Shared Secret

xOwP5+sOYOCBR4VboMN+|dz9Ea3D7rI7fKNTKKsicBuw=

Download key Iil h E

Set Up HTTP Signature Message

When you generate one or more keys, you can view the keys on the Key Management page.

Test the Shared Secret Key Pair

After creating your key certificate, you must test and verify that your key can successfully
process APl requests. These tasks explain how to test and validate your key certificate
using the developer center and the Business Center.

1. Go to the developer center's APl Reference:
https://developer.cybersource.com/api-reference-assets/
index.html#payments_payments_static-home-section

2. On the left navigation panel, click APl Endpoints & Authentication.

Under Authentication and Sandbox Credentials, set the Authentication Type drop-down
menu to HTTP Signature.

Enter your organization ID in the Organization ID field.

Enter your key, also known as your private key, in the Key field.

Enter your secret key, also known as your public key, in the Shared Secret Key field.
Click Update Credentials.

w

A

Authentication and Sandbox Credentials

@ Success: Succesfully updated credentials for HTTP Signature

There are two forms of authentication available: JSON Web Token (JWT) and HTTP Signature. JWT requires signing a P12 Certificate wh
method which uses a shared secret key. Authorization Headers are generated based on payload for each request. To learn more about

For your convenience, you can quickly configure this API Console to send all sample requests with either method, using your own sandt
Console credentials.

Authentication Type

HTTP Signature A4 ‘hn

You are using your own sandbox account. Use the Reset button to revert to default credentials.

Organization ID * hn Key * hE Shared Secret Key * h!

testEBC cd783cd1-3130-4dda-b2ca-7e9120ac6 | ymFjnMsh8Bq887/Fie34+ALQD;J:

i—

Authenticate Key and Shared Secret Key

8. On the developer center's left navigation panel, navigate to Payments > POST Process a
Payment.

9. Under Request: Live Console click Send.

Cybersource Set Up HTTP Signature Message 47

https://developer.cybersource.com/api-reference-assets/index.html#payments_payments_static-home-section
https://developer.cybersource.com/api-reference-assets/index.html#payments_payments_static-home-section
https://developer.cybersource.com/api-reference-assets/index.html#static-api-endpoints-section

Set Up HTTP Signature Message

Home

APl Endpoints & Authentication

Payments

Payments

POST Process a Payment

PATCH Increment an
Authorization

POST Check a Payment
Status

POST Create a Payment
Order Request

POST Create Alternative
Payments Sessions
Request

PATCH Update Alternative
Payments Sessions
Request

Reversal

POST Process an
Authorization Reversal

POST Timeout Reversal

Capture

POST Capture a Payment

@ Required fields are denoted
optional, however if providec

*

Request Builder

Configuratis

reconciliationld @

pausedRequestld C

transactionid @

comments @

v partner

originalTransac

developerld 0

solutionld @

thirdPartyCerti

applicaﬂnnNameG

applicationVersion'

applicationUser 0

v processinginformation

actinnList@

enableEscrowOptic

actionTokenTypes (

hihSc:urc:eA@

essage

m canti ires @

Set Up HTTP Signature Message

A message displays confirming that your request was successful with the status code

201.

@ Success: HTTP Status Code 201

10.Log in to the Business Center:
https://businesscentertest.cybersource.com

1.

:g Transaction Management A

Transactions _

Transaction by Phase

Secure Acceptance

Decision Manager

Test Endpoints

=1
On the left navigation panel, navigate to Transaction Management > Transactions.

12.Under Search Results, verify that the request ID from the test authorization response is

listed in the Request ID column.
If the test authorization was successful, a success message is present in the

corresponding Applications column.

Search Results 1- 8 of 8 sh

Jun12 2024 02:34:46 PM G

When testing an APl outside of the Developer Center's APl Reference sandbox, send your

test APl request messages to the test server:
https://apitest.cybersource.com

For example, to test an authorization request, you can send the request to this endpoint:

https://apitest.cybersource.com/pts/v2/payments

Cybersource Set Up HTTP Signature Message

49

https://businesscentertest.cybersource.com/ebc2/

Set Up HTTP Signature Message

Construct Messages Using HTTP Signature
Security

HTTP signatures use a digital signature to enable the receiver to validate the sender's
authenticity and ensure that the message was not tampered with during transit. For more
information about HTTP signatures, see the IETF Draft that is maintained by the IETF HTTP
Working Group (https:/httpwg.org).

Follow these steps to implement HTTP signatures:

1. Create the shared secret key pair. See Create a Shared Secret Key Pair on page 42.

2. Generate a hash of the message body. See Generate a Hash of the Message Body on
page 50.

3. Generate a signature hash. See Generate the Signature Hash on page 51.

4. Populate the signature header field. See Update Header Fields on page 53.

Elements of an HTTP Message
A HTTP Message is built with the following elements:

Headers
Your message header must include these header fields:
HTTP Header Fields
HTTP Header Field Description
__|
v-c-merchant-id Your Cybersource organization ID.
Date The date of the transaction in the RFC1123 format. (Thu, 18 Jul
2019 00:18:03 GMT)
Content-Type Also known as the Multipurpose Internet Mail Extension (MIME
) type, this identifies the media or file type of the resourc
e. (application/json)
Host The transaction endpoint. (https://api.cybersource.com)
Body

The message body. For more information on setting up the body, see Generate a Hash of
the Message Body on page 50.

Generate a Hash of the Message Body

This hash is used to validate the integrity of the message at the receiving end.
Follow these steps to generate the hash:

1. Generate the SHA-256 hash of the JSON payload (body of the message).

Cybersource Set Up HTTP Signature Message 50

https://httpwg.org/

Set Up HTTP Signature Message

2. Encode the hashed string to Base64.
3. Prepend SHA-256= to the front of the hash.
4. Add the message body hash to the digest header field.

Creating a Message Hash Using the Command Line shasum Tool

echo -n "{"clientReferenceInformation":{"code":"TC50171_3"},"paymentInformation”:{"card":{"number":
"4111111111111111""expirationMonth":"12" "expirationYear":"2031"}},"orderInformation":{"amountDetails":
{"totalAmount":"102.21""currency":"USD"},"billTo”:{*firstName":"John""lastName":"Doe""address1":
"1MarketSt","locality":"sanfrancisco"'administrativeArea":"CA"'postalCode":"94105" "country":"US",
"email":"test@cybs.com"'phoneNumber":"4158880000"}}}" | shasum -a 256

echo -n "6ae5459bcB8a7d6a4b203e8a734d6a616725134088e13261f5bbcefcl1424fc956" | base64
Creating a Message Hash Using the Command Line base64 Tool

echo -n "6ae5459bcB8a7d6a4b203e8a734d6a616725134088e13261f5bbcefcl424fc956" | base64
Creating a Message Hash Using C#

public static string GenerateDigest() {
var digest = "";
var bodyText = "{ your JSON payload }";
using (var sha256hash = SHA256.Create()) {
byte[] payloadBytes = sha256hash
.ComputeHash(Encoding.UTF8.GetBytes(bodyText));
digest = Convert.ToBase64String(payloadBytes);
digest = "SHA-256=" + digest;
}

return digest;

}

Creating a Message Using Java

public static String GenerateDigest() throws NoSuchAlgorithmException {
String bodyText = "{ your JSON payload }";
MessageDigest md = MessageDigest.getInstance("SHA-256");
md.update(bodyText.getBytes(StandardCharsets.UTF_8));
byte[] digest = md.digest();
return "SHA-256=" + Base64.getEncoder().encodeToString(digest);
}

Digest Header Field

digest:
SHA-256=NmFINTQ10WJjOGE3ZDZhNGIyMDNIOGE3MzRKNmE2MTY3MjUxMzQwODhIMTMyNjFmNWJiY2VmYzEOMiRmYzk1Ng==

Generate the Signature Hash

The signature hash is a Base64-encoded HMAC SHA-256 hash of the header fields and
their values. The following information must be included in the signature hash:

Cybersource Set Up HTTP Signature Message 51

Set Up HTTP Signature Message

Header Fields

Header Field Description
Date From the header, the date and time in the RFC1123 format
For example: Date: Thu, 18 Jul 2023, 22:18:08.

Digest The Base64-encoded SHA-256 hash of the message body
.For more information, see Generate a Hash of the Messa
ge Body. For example: Digest: SHA-256=gXWufV4Zc7
VKNOWkv9jh/JuAVclgDusx3vkyo3uJFWU=. Do not include
the digest with GET requests.

Host From the header, the endpoint host. For example: api
test.cybersource.com.

v-c-merchant-id From the header, the merchant ID associated with the re
quest. For example: v-c-merchant-id: mymerchantid.

request-target The HTTP method and endpoint resource path. For ex

ample: request-target: post /pts/v2/payments/.

Follow these steps to generate the signature hash value:

1. Generate a byte array of the secret key generated previously. For more information,
see Create a Shared Secret Key Pair on page 42.

2. Generate the HMAC SHA-256 key object using the byte array of the secret key.

3. Concatenate a string of the required information listed above.
For more information, see Creating the Validation String below.

4. Generate a byte array of the validation string.

5. Use the HMAC SHA-256 key object to create the HMAC SHA-256 hash of the validation
string byte array.

6. Base64 encode the HMAC SHA-256 hash.

Signature Hash

signature="OuKeDxj+Mg2Bh9cBnZ/25IXJs5n+qj93FvPKYpnqtTE="

Creating the Validation String

To create the validation string, concatenate the required information in the same order as
listed in the signature header field parameter. Each item must be on a separate line, and
each line should be terminated with a new line character \n.

Validation String Example

host: apitest.cybersource.com\n

date: Thu, 18 Jul 2019 00:18:03 GMT\n

request-target: post /pts/v2/payments/\n

digest: SHA-256=gXWufV4Zc7VkNI9WkvIijh/JuAVclgDusx3vkyo3uJFWU=\n
v-c-merchant-id: mymerchantid

Cybersource Set Up HTTP Signature Message 52

Set Up HTTP Signature Message

Generating a Signature Hash in C#

private static string GenerateSignatureFromParams(string signatureParams, string secretKey) {
var sigBytes = Encoding.UTF8.GetBytes(signatureParams);

var decodedSecret = Convert.FromBase64String(secretKey);

var hmacSha256 = new HMACSHA256(decodedSecret);

var messageHash = hmacSha256.ComputeHash(sigBytes);

return Convert.ToBase64String(messageHash);

}

Generating a Signature Hash in Java

public static String GenerateSignatureFromParams(String keyString,

String signatureParams) throws InvalidKeyException, NoSuchAlgorithmException {

byte[] decodedKey = Base64.getDecoder().decode(keyString);

SecretKey originalKey = new SecretKeySpec(decodedKey, 0, decodedKey.length, "HmacSHA256");
Mac hmacSha256 = Mac.getInstance("HmacSHA256");

hmacSha256.init(originalKey);

hmacSha256.update(signatureParams.getBytes());

byte[] HmachSha256DigestBytes = hmacSha256.doFinal();

return Base64.getEncoder().encodeToString(HmachSha256DigestBytes);}

Update Header Fields

When the signature is generated, you can populate the signature header field. The
signature header field includes these parameters:

Signatures
Signature Parameter Description
__|
keyid The shared secret key used to encrypt the signature.
algorithm The HMAC SHA256 algorithm used to encrypt the signature. It
should be formatted: HmacSHA256.
headers This ordered list of the fields included in the signature: h
ost date request-target digest v-c-mercha
nt-id
signature The signature hash.

Signature Header Field Format
Signature:"keyid:"[shared secret key]"algorithm="[encryption algoritm]"headers="fieldl"
"field2" "field3" "etc', signature="[signature hash]"

Signature Header Example
Signature:"keyid="123abcki-keyl-key2-key3-keyid1234567",

algorithm="HmacSHA256", headers="host date request-target digest v-c-merchant-id",
signature="hrptKYTtn/VfwAdUgkrQOHT7jqgAbagAbFC6NRGXrNzE="

Cybersource Set Up HTTP Signature Message 53

Set Up HTTP Signature Message

Going Live

When you are ready to process payments in a live environment, you must transition your
account to a live status with a valid configuration for your chosen payment processor.
When live, your transaction data flows through the production Cybersource gateway, to
your processor, and on to the appropriate payment network.

To transition your account:

1. Sign up for a merchant account.

2. Contact sales to establish a contract with Cybersource that enables you to process
real transactions and receive support.

3. Submit a merchant ID (MID) activation request.

It may take up to three business days to complete a MID activation request.

Create a Merchant ID

The merchant ID (MID) is used to identify you and your transactions and is included in

the header of each transaction request. When you signed up for a sandbox account, you
received a merchant ID for testing purposes. If you choose, you can use that merchant ID
as your production ID.

Follow these steps to sign up for a merchant account in order to create a production MID:

1. Navigate to the Business Center Evaluation Account Sign-up page, enter the required
information, and click Create Account.
Choose your merchant ID name carefully. It cannot be changed. This name is not visible
to your customers.

2. Review your information entered, especially your business email address. Your merchant
ID registration information will be sent to the email entered on this form.

3. Check your email from customer support titled: Cybersource Merchant Evaluation
Account.
This email will include the Organization ID and contact email associated with your MID.

4. Go to your email and find a message titled: Merchant Registration Details. Click the Set
up your username and password now link.
Your browser opens the New User Sign Up wizard.

5. Enter the Organization ID and Contact email you supplied previously. Follow the wizard
pages to add your name, a username, and password.

6. Log into the Business Center.
When you log in for the first time, you will be asked to identify your identity through a
system-generated email that is sent to your email account.

7. Check your email for a message titled: Cybersource ldentification Code.
Note the passcode.

8. Enter the passcode on the Verify your Identity page.
You should be directed to the Business Center home page.

You have successfully created a merchant ID and merchant account.

Cybersource Set Up HTTP Signature Message

https://www.cybersource.com/en-us/contact-us/sales.html
https://businesscenter.cybersource.com/ebc2/registration/external

Set Up HTTP Signature Message

Activate your Merchant ID

The activation process, also known as going live, transitions your MID and account from
test status to live status, enabling you to process real transactions in production. It may
take up to three business days to complete the MID activation request.

To transition your account complete these tasks:

1. Signinto the Support Center as an administrator.
2. Enter your credentials and log in to your test environment.

~

o o®

oooooooooo

rrrrrrrrrrrrrrrrrrrr

nnnnnnnnnnnnn

777| t ,ll Cybersource 2023

Enter your MID in the Organization ID text box.

3. Go to Support Cases > MID Configuration Request. The MID Configuration Request
page should be open.

4. Select MID Activation.

5. In the Description field, enter the Merchant ID that you want to take live.

6. Select the processor configuration and enter the name of your processor.
If you are unsure of your processor name, contact your merchant service provider or
your merchant acquiring bank.

7. Select the environments that this change applies (test or production).
8. Select Service Enablement and list the products and services that you intend to use.
9. Select Submit.

Production Endpoints

When sending APl request messages using your production account, send your requests
to the production server:

https://api.cybersource.com

For example, to send a live authorization request, you can send the request to this
endpoint:

https://api.cybersource.com/pts/v2/payments

Cybersource Set Up HTTP Signature Message

https://support.visaacceptance.com/

VISA Platform Connect: Specifications and Conditions for Resellers/Partners

VISA Platform Connect:
Specifications and
Conditions for Resellers/
Partners

The following are specifications and conditions that apply to a Reseller/Partner enabling

its merchants through Cybersource for Visa Platform Connect (*VPC”) processing. Failure
to meet any of the specifications and conditions below is subject to the liability provisions
and indemnification obligations under Reseller/Partner’s contract with Visa/Cybersource.

1. Before boarding merchants for payment processing on a VPC acquirer’s connection,
Reseller/Partner and the VPC acquirer must have a contract or other legal agreement
that permits Reseller/Partner to enable its merchants to process payments with the
acquirer through the dedicated VPC connection and/or traditional connection with
such VPC acquirer.

2. Reseller/Partner is responsible for boarding and enabling its merchants in accordance
with the terms of the contract or other legal agreement with the relevant VPC acquirer.

3. Reseller/Partner acknowledges and agrees that all considerations and fees associated
with chargebacks, interchange downgrades, settlement issues, funding delays, and
other processing related activities are strictly between Reseller and the relevant VPC
acquirer.

4. Reseller/Partner acknowledges and agrees that the relevant VPC acquirer is
responsible for payment processing issues, including but not limited to, transaction
declines by network/issuer, decline rates, and interchange qualification, as may be
agreed to or outlined in the contract or other legal agreement between Reseller/
Partner and such VPC acquirer.

DISCLAIMER: NEITHER VISA NOR CYBERSOURCE WILL BE RESPONSIBLE OR LIABLE

FOR ANY ERRORS OR OMISSIONS BY THE VISA PLATFORM CONNECT ACQUIRER IN
PROCESSING TRANSACTIONS. NEITHER VISA NOR CYBERSOURCE WILL BE RESPONSIBLE
OR LIABLE FOR RESELLER/PARTNER BOARDING MERCHANTS OR ENABLING MERCHANT
PROCESSING IN VIOLATION OF THE TERMS AND CONDITIONS IMPOSED BY THE RELEVANT
VISA PLATFORM CONNECT ACQUIRER.

Cybersource VISA Platform Connect: Specifications and Conditions for Resellers/Partners 56

	Contents
	Getting Started with REST
	Recent Revisions to This Document

	Overview of Getting Started with REST
	Set Up Your Cybersource Account
	Set Up a JSON Web Token Message
	Sign Up for a Sandbox Account
	Create a P12 Certificate
	Create a P12 File
	Extract the Private Key from the P12 Certificate
	Test the Shared Secret Key Pair
	Test Endpoints

	Construct Messages Using JSON Web Tokens
	Elements of a JSON Web Token Message
	Generate a Hash of the Message Body
	Generate the Token Header
	Generate a Hash of the Claim Set
	Generate a Hash of the Token Header
	Generate the Message Body
	Generate a Token Signature
	Generate a JSON Web Token

	Enable Message-Level Encryption
	Prerequisites for Message-Level Encryption
	Message-Level Encryption Using JSON Web Tokens

	Going Live
	Create a Merchant ID
	Activate your Merchant ID
	Production Endpoints

	Set Up HTTP Signature Message
	Sign Up for a Sandbox Account
	Create a Shared Secret Key Pair
	Create a Shared Secret Key Pair
	Test the Shared Secret Key Pair
	Test Endpoints

	Construct Messages Using HTTP Signature Security
	Elements of an HTTP Message
	Generate a Hash of the Message Body
	Generate the Signature Hash
	Update Header Fields

	Going Live
	Create a Merchant ID
	Activate your Merchant ID
	Production Endpoints

	VISA Platform Connect: Specifications and Conditions for Resellers/Partners

