Digital Accept Secure Integration

Developer Guide

~.

-’
cybersource

A Visa Solution

© 2024. Cybersource Corporation. All rights reserved.

Cybersource Corporation (Cybersource) furnishes this document and the software described in this document under
the applicable agreement between the reader of this document (You) and Cybersource (Agreement). You may use this
document and/or software only in accordance with the terms of the Agreement. Except as expressly set forth in the
Agreement, the information contained in this document is subject to change without notice and therefore should not be
interpreted in any way as a guarantee or warranty by Cybersource. Cybersource assumes no responsibility or liability
for any errors that may appear in this document. The copyrighted software that accompanies this document is licensed
to You for use only in strict accordance with the Agreement. You should read the Agreement carefully before using the
software. Except as permitted by the Agreement, You may not reproduce any part of this document, store this document
in a retrieval system, or transmit this document, in any form or by any means, electronic, mechanical, recording, or
otherwise, without the prior written consent of Cybersource.

Restricted Rights Legends

For Government or defense agencies: Use, duplication, or disclosure by the Government or defense agencies is subject to
restrictions as set forth the Rights in Technical Data and Computer Software clause at DFARS 252.227-7013 and in similar
clauses in the FAR and NASA FAR Supplement.

For civilian agencies: Use, reproduction, or disclosure is subject to restrictions set forth in subparagraphs (a) through (d)
of the Commercial Computer Software Restricted Rights clause at 52.227-19 and the limitations set forth in Cybersource
Corporation's standard commercial agreement for this software. Unpublished rights reserved under the copyright laws of
the United States.

Trademarks

Authorize.Net, eCheck.Net, and The Power of Payment are registered trademarks of Cybersource Corporation.
Cybersource and Cybersource Decision Manager are trademarks and/or service marks of Cybersource Corporation. Visa,
Visa International, Cybersource, the Visa logo, the Cybersource logo, and 3-D Secure are the registered trademarks of

Visa International in the United States and other countries. All other trademarks, service marks, registered marks, or
registered service marks are the property of their respective owners.

Version: 24.03

Digital Accept Secure Integration | 2

Contents

Recent Revisions to ThisS DOCUMENT.........cccrrmrmnmnmsmmmss s 7
ADOUL ThiS GUIEE..ceiiierersresussssrsscesesssssssssssssssss s e E AR AR AR AR E R R R AR AR RS 9
Introducing Digital Accept Secure Integration Product Suite...........coummsmsmmnsssmssssmssssssnssssssssssssanss 10
3 0 | o 13
Establishing a Payment Session with a Capture CONEXL.......oueermenmermmsssersessssessesssesssessssesssesssessessns 13
REST Example: Establishing a Payment Session with a Capture Context.........uenerseennenns 14
Validating the JSON WED TOKEN......cueerirriesreeseessessssssesssessssssssssssssssssssssssssssssssssessssssssesssssssessssssssesssssssess 15
Retrieving the PUDIIC KeY ID...... e sesssssssssssesssessssssssssssesssessssssssssssssssssssssss 16
Retrieving the PUDIIC KeY ...t sessssssssssssss s sssesssessssssssssssessssssasssans 16

JAVA Example: Validating the Transi€nt TOKEN......cceeeenmieniessessssesssssesssesssesssessssssssssssssssesssees 17
Populating the JSON Web Token with Customer INformation..........eeeeeeeeseessessesssessseeens 19
Constructing the JSON Payload........ceeerersesssssssesssssssssssssesssssssssssesssesssssssssssessssssssssssssess 19
Generating a JSON Web Encryption Data ODjecCt.......reemeeeesessessssssesssssssssssssssssssssssesssessses 21
Populating the TOKEN REQUEST.......coccuurrrrieeseerssssssssesssessssssssssssesssessssssssssssesses 25
Microform INteGration V2. s aes 27
L= w0 o] o o PPN 28
Creating the Server-Side CONEXL.....reersrssesssssss s sesssesssssssesssessssssssssssesssssssssssssasees 28
Validating the Capture CONTEXE......merieessessssssesssesssessseesssesssesssesssssssssssesssssssessssssssssssssssssssessssssasesas 30

Setting Up the CHENT SIAE.... et sesssessse s sessse s ssssss s sssssss s ss s ssssssssssaes 32

Getting Started EXaMPIES....oerrieiesesssesssessesssesssssssssssssssesssess s sssssssss s sssesssessssssasesssessssssas 36

R 74 1 0PSRN 43
DY) o LT 47
NY=T01 U U0 Y20 2 UET0l0) 40000 Tcd o e F-Ua (o) PSPPSR 49

PCI DSS GUIANCE ... ieureeieereeeseesesseessessesssessessssssssssssssssssss s ssss s s s s s s 50

APT REFEIEIICE. ...euveeeeeereeseeeesseesesse e s s bbb st 50

00 - T 03 (=) o TP 50

MOAUIE: FLEX...ouiiiereinsieseessessessesssssss s sssssssssss s s sssssssssss s s sessssssssssssssssssssse s sssssnsssesssessnssssssssssssassssnses 58

00 =TSSR\ 163 40)) ' VUSSP 60

00 = TS\ D10 0] 10) ' 01 5 (0) 3PP 63

DT 2) 0 LT 66

GLODAL ettt AR AR 69

L0380 T B8 4 T 0T 0 L 74

Digital Accept Secure Integration | Contents | 3

Contents | 4

UNified CheCKOUL FIOW ...t sess s sssssse s ssssss bbb s sssssssssesssessaees 75
Enabling Unified Checkout in the BuSiness CeNter......mrermeemsserssssesssessssessssssssssessesssesns 77
Y= 0= N 16 (N1 ol U o JO PPN 78
(O o Db < 00 111)¢ 78
00D =) oL Uo LI Y=] ol U o JO PSP 81
Loading the JavaScript Library and Invoking the Accept FUNCtion........coconenreenecreenscsneensesseenennn. 81
Adding the Payment Application and Payment ACCEPLANCE......ccuuereemerreessenssessssessesssessseessesnns 82
TTANSIENT TOKEIIS..cvueuserserseessessseesserssesssesssess s sess s sess s s ss s RS REEERRR e 84
Transient TOKEN FOTMAL......uiieeseesseessessesssessseessssssesssesssesssssssssssssssssss s sssessssssssesssssssessssssasesans 84
TOKEN VETIfICATION. ... cuueeuieeeesseeseessessess s s s s s bbb 85
Authorizations with @ TranSient TOKEN.........eeeieeersessess s sessssssssssesssessaees 86
Required Field for an Authorization with a Transient TOKENcoueeeeneeneeesssessessessseeenees 86
REST Example: Authorization with a Transient TOKEN.......ccoceenennernneeeesseesssessesssessseeseeenns 87
Capture CONLEXE AP 89
Required Fields for Requesting the Capture CONTEXL.......mmmmessssesssessesssessesssssssesssessesens 91
REST Example: Requesting the Capture CONTEXL.......umeermemmsssemsssesssssesssesssssssesssesssesssssssssans 91
Payment DELAILS APL..... et s s 97
Required Field for Retrieving Transient Token Payment Details.........oueernmeemeeneerneeenneessessseeenne 99
REST Example: Retrieving Transient Token Payment Details.........ccoumeeeneernsernseeseesseesseessseneens 99
Unified Checkout CONfIGUIatiON.....coiuemeereerersseessessesssssssesssssssesssssssesssess s sssesssess s ssssssssssssssssssssssssssses 100
Enable Digital PaymMents.....ooeererrersssssesssessssssssssssesssessssssssssssssssessssssssssssesssssssssssssssssssssssssssssssssessnes 101
Manage PerMiSSIONS. ..o 103
UNified ChECKOUL Ul eieeeeseciersessessessessssessssssssssssssssssssssess s ssssssesssssssessss s ssssssss s ssssssssssssssssssssssas 106
00§ ol Q0 o 0 o2 | 2 U O PPN 107
L1007 o4 (3 - 0 O P 109
Manual Payment ENEIY Ul.....oesessssssssssssesssssssssssesssessssssssssssesssessssssssssssesssssssssssssssees 110
Pay with Bank ACCOUNT Ul......oierressesessessssssesssesssesssssssssssesssssssssssssssesssssssssssssssssssssssssssssssssesas 114
PAZE UL 121
JSON WED TOKENS.c.ucurereueenereessessesssessessssssesssssssssssssssssessssssssssessssssssssssssssssssssssessessssssssssssssssasssssssssssssssessssssesssssssanes 123
Supported Countries for Digital PAYMENTS.......c.oeeerereensseesessssssssssssssssssssesssesssessssssssssessssssssssans 124
Supported Countries for Digital PQyments A-D.......eeeseseessesssssssssssssssssssssssssess 124
Supported Countries for Digital Payments E-K.......cooneessssessessssssessessssssesnns 126
Supported Countries for Digital Payments L-Ru.....enessessesssessesssesssssssssssssseees 129
Supported Countries for Digital PAQyMents S-Z......oeenernmerneeerersessesssessssesssssssssesssssssessnes 132
Y0 0] 0100 =Y U I Yo LTS 135

Digital Accept Secure Integration | Contents | 4

Contents | 5

T T 0) 4 00T =T3PPSR 137
Click tO Pay Drop-In UL ssssssssasss s ssssssssasssas s sesesesssssssssssasssseses 138
Click to Pay CUStOmMEr WOTKIIOWS.......ovuuieeeicerirseesesssssssssssssssssss s ssssssess s sessssssssesssesssesssssssssssessssssssssans 139
Recognized Click t0 Pay CUSTOMEToeerreresseessesssesssesssssssssssssssssssessssssssssssesssessssssssssssessssssssssans 140
Unrecognized Click t0 Pay CUSTOMETocurereseesseessesssessesssesssesssssssesssessssssssssssssssssssssssssssssssssnes 142

OB CTSy o 04D Y 00 1) o 144
Click to Pay DIrop-In UL FIOW....cerersesssesseessessssssssssssssesssssssssssssssssssssssssssssesssessssssssesssssssssssssssssssssssssses 146
Enabling Unified Checkout in the BuSiness CeNter......emiemesneessesnessesssesssesssesssesssssssssans 148

Y=Y 7 N U6 (Y= o U o JO PPN 149
L0 o Db < 00D 111)« 149

(00D =] oLy Uo [Tl ol U] o JO PPN 152
Loading the JavaScript Library and Invoking the Accept FUNCLION.....coocerereerneereenneeneereeeeereenne 152
Adding the Payment Application and Payment ACCEPLANCE........couuueereeereeeseesesssesssessssesssesssensens 153
TTANSIENT TOKEIIS. .couieeseeesersreesressseesseesssesssesssess s ssess s s s ses s s s RR R RRER b RRRRa 155
Transient TOKEN FOTMAt. ... sssssssssesssesssesssssssssssssssssssssssssssssssssssessssssssesssesssessaees 155
O R /=) T (=T (o) PPN 156

(08 101000 I 000 1123 (o 2V o PPN 156
Required Fields for Requesting the Capture CONtEXt.......eeeemeerssessessssssesssessssssssssssssnns 159
REST Example: Requesting the Capture CONTEXL......ermeremseeressesssesssesssssssssssssssesssssssessnes 159
PaymMent DELAILS APL..... et s bbb 164
Required Field for Retrieving Transient Token Payment Details........c.ccouunienmiemeeeneeesneesessennens 166
REST Example: Retrieving Transient Token Payment Details........c.coeeenernerseeseesseesssesseenenns 166
Payment Credentials APL....... e sesssssssesssesssessssesssesssess s s s s sssass s sssesssens 167
Required Field for Retrieving Payment Credentials.........cemenreeeseesessessesssessssssesssessens 170
REST Example: Retrieving Payment Credentials.........eeeensesnsessessesssesssssssesssessssssesnns 170
Unified Checkout CONfIGUIatiON......oiueeuereerersseessesssesssess s sessssssssesssess s sssessssss s sssssssssssssssssssssssessses 172
Upload YOUr ENCIYPLION KeY ... ecrerreeesseesessssssssssssssssssssssssesssesssessssssssssssssssssssssssssssesssssssssssssaees 172
ENADIE ClICK t0 Pay ...ttt ss s sessssssss s sssesssssssss s ssss s ssssssssssssssssssasesns 175
Manage PerMiSSIONS. ... 177
UNified ChECKOUL Ul ceieeeeseciersessesssessssssssssssssssssss s sssesssessssssssssssssssessss s ssssssssssss s ssssssssssssssssssas 180
JSON WED TOKENS....cuieneueeneseesseseesssessessssssessssssssssessssssessssssesssesssssssssssssessssssssssessessssssssssssssssassssesssssssssssssssssessassssnnes 182
Supported Countries fOr CIICK tO Pay......ceiesesssessssssesssssssssssssssssssssssessssssssesssesssesssssssessens 182
YN 0] 0100 =Y B T Yo TSP 185
Processing Authorizations with a Transient TOKeN......c.ccummsmmmmsssssss s 187
Authorization with @ TranSieNt TOKEM. ... sesssesssssssesssens 187

Digital Accept Secure Integration | Contents | 5

Contents | 6

Required Field for an Authorization with a Transient TOKENcceeneenernmeesessseesseennens 187
REST Interactive Example: Authorization with a Transient ToKeN.......ccccuoeneereenneeneensesseeneenn. 188
REST Example: Authorization with a Transient TOKEN........oeeneeneesessseesssessesssesssesssesnns 188
Authorization and Creating TMS Tokens with a Transient TOKeN.......ccocumemeeneeneeenseesseessensseessenns 190

Required Fields for an Authorization and Creating TMS Tokens with a Transient Token... 190

REST Interactive Example: Authorization and Creating TMS Tokens with a Transient

0]) PPN 192
REST Example: Authorization and Creating TMS Tokens with a Transient Token................. 192
VISA Platform Connect: Specifications and Conditions for Resellers/Partners.........cccusesususans 196

Digital Accept Secure Integration | Contents | 6

Recent Revisions to This Document

24.03

Click to Pay Drop-In Ul
Added Click to Pay Drop-In UI.

24.02

This revision contains only editorial changes and no technical updates.

24.01
Checkout API
Removed the Checkout AP], as this method is deprecated.
Unified Checkout

Added a Unified Checkout card entry form diagram. See Unified Checkout Flow (on
page 75).

Updated the capture context description and request example. See Capture Context API
(on page 89) and REST Example: Requesting the Capture Context (on page 91).

23.05

Revised the Flex API section and enhanced the Introduction to Digital Accept content.

23.04

Flex API v2

Added the list of possible fields to capture and tokenize and added an example that
includes all possible API fields for generating the capture context.

23.03

All Integration Products

Updated the overview. See Digital Accept Overview (on page).

Added payment examples.

Digital Accept Secure Integration | Recent Revisions to This Document | 7

unique_5
unique_5
unique_5

23.02
Unified Checkout

Added Unified Checkout Integration as an option for digital acceptance.

Digital Accept Secure Integration | Recent Revisions to This Document | 8

About This Guide

This section describes how to use this guide and where to find further information.

Audience and Purpose

This document is written for merchants who want to enable Unified Checkout on their e-commerce
page.

Conventions

This special statement is used in this document:

Important: An Important statement contains information essential to successfully
completing a task or learning a concept.

Related Documentation

Visit the Cybersource documentation hub to find additional processor-specific versions of this guide
and additional technical documentation.

Customer Support
For support information about any service, visit the Support Center:

http://support.cybersource.com

Digital Accept Secure Integration | About This Guide | 9

https://developer.cybersource.com/docs.html
https://developer.cybersource.com/docs.html
http://support.cybersource.com

Introducing Digital Accept Secure Integration
Product Suite

The Secure Integration Product Suite allows you to simplify the acceptance of sensitive customer
payment information. When a customer enters their payment details on your webpage, app, or
elsewhere, it is replaced with a transient token. Tokenization ensures that the card data can be
transported securely, which limits your exposure and significantly reduces your Payment Card
Industry Data Security Standard (PCI DSS) compliance burden.

The Secure Integration Product Suite consists of three products that can be used in a variety of
scenarios: Unified Checkout, Microform Integration, and Flex API.

Unified Checkout

Unified Checkout is a pre-configured drop-in Ul for accepting online payments. It supports multiple
payment methods including traditional cards and digital wallets such as Google Pay and Visa Click
to Pay. Because it is pre-configured with digital payment support, Unified Checkout enables you to
go live faster and substantially reduce the development burden of accepting a multitude of payment
options. This solution is ideal for sellers looking for a complete payment acceptance technology with
support for multiple payment methods.

Unified Checkout Button Widget Interface

Cards We Accept Drop-in UI/UX provides a faster way to
VISA . @ accept mul’fiple digital p-ayment me-'th.ods
seamlessly integrated with your existing

customer experience.
Checkout With Card

her Paym Metk .
Other Payment Methods Customizable manual card entry supports

the capture of payment and address
& Pay
information across multiple geographies.

> visa @
Digital wallet support.
Click to Pay v :”15?-
Click to Pay “’1‘:?}‘-‘;;‘;2 Click to pay for friction free purchase.

) Visa
Click to Pay eore 7521 -

Unified Checkout includes these features:

Digital Accept Secure Integration | Introducing Digital Accept Secure Integration Product Suite | 10

* Leading security technology

* Simple front-end integration

* Integrated with emerging digital standards

* Integrated with a range of payment methods

» Payment option presentation is optimized

For more information, see Unified Checkout (on page 74).

Microform Integration

Microform Integration is a payment card and card verification acceptance solution that can be
embedded. Use it to securely accept payment information at your web page and have complete
control over the look and feel of your payment form. Microform Integration captures the card
number and card verification number fields from within your existing user interface. This solution
is for sellers looking for a secure way to capture sensitive payment data from within their own
customized payment form.

Microform Integration Payment Form Interface

Card Number
JPFRAK AR AR HA visa Secure Microform fields can
be seamlessly inserted into
CVV/CWV2 Expiry
Fxxx] MM / YYYY your payment page.

Microform Integration includes these features:

* Leading security technology
 Seamlessly integrated into existing payment pages

* Fully customizable

For more information, see Microform Integration v2 (on page 27).

Digital Accept Secure Integration | Introducing Digital Accept Secure Integration Product Suite | 11

Flex API

Flex API can be used to securely capture and transport payment data between systems. This solution
is ideal for Internet of Things (IoT) and third-party integrations. For more information, see Flex API
(on page 13).

Digital Accept Product Comparison

This chart compares Digital Accept products and features.

Products and Features Comparison Chart

Unified Microf
icroform
Checkout i Flex API
B Integration
Integration

Drop-in UI o .y *
Digital Wallet Support
{Google Pay and Visa o x X
Click to Pay)
Browser Based oy o X
Complete Control of % Y, Ny,
Lock and Feel
Platforms Web anly Web only All

Digital Accept Secure Integration | Introducing Digital Accept Secure Integration Product Suite | 12

Flex API

The Flex API enables merchants to securely accept customer payment information captured within

a server-side application using a set of APIs. These APIs protect your customer's primary account
number (PAN), card verification number (CVN), and other payment information by embedding

it within a transient token. This allows payment data to be stored and transported and complies

with the Payment Card Industry Data Security Standard (PCI DSS) policies and procedures. These
transient tokens can be validated by the receiver to ensure the data integrity and protect against data
injection attacks.

! Warning: Flex APl is intended for server-side applications only. Do not use the Flex API in
client-side applications. To add secure payments directly into client-side code, use Unified
Checkout.

How It Works
Follow these steps to capture payments using the Flex API:

1. Establish a payment session with a predefined customer context.
2. Validate the JSON Web Token.

3. Populate the JSON Web Token with customer information.

Customer Context
An important benefit of the Flex API is managing Personal Identifiable Information (PII). You can set

up your customer context to include all PII associated with transactions, protecting this information
from third parties.

Establishing a Payment Session with a Capture Context

To establish a payment session, include the API fields you plan to use in that session in the body of
the request. The system then returns a JSON Web Token (JWT) that includes the capture context.

To determine which fields to include in your capture context, identify the personal information that
you wish to isolate from the payment session.

Digital Accept Secure Integration | Flex API | 13

Capture Context Fields

When making a session request, any fields that you request to be added to the capture context
are required by default. However, you can choose to make a field optional by setting the required
parameter to false.

For example, the following code snippet includes both required and optional fields:

"fields" : {
"paymentInformation" : {
"card" : {
"number" : {
¥
"securityCode" : {
"required" : true
¥
"expirationMonth" : {
"number" : {
"required" : false
¥
"expirationYear" : {
"required" : false

In this example, the paymentinformation.card.number and
paymentInformation.card.securityCode fields are required and the
paymentInformation.card.expirationMonth and paymentInformation.card.expirationYear
fields are optional. The inclusion of the paymentinformation.card.number field in

the request sets it as a required field and, therefore, you do not need to include the
paymentinformation.card.number.required field.

Endpoint

Production: GET https://api.cybersource.com/flex/v2/sessions

Test: GET https://apitest.cybersource.com/flex/v2/sessions

REST Example: Establishing a Payment Session with a Capture Context

Production Endpoint: GET https://api.cybersource.com/flex/v2/sessions

Digital Accept Secure Integration | Flex API | 14

Test Endpoint: GET https://apitest.cybersource.com/flex/v2/sessions

Request
{
"fields" : {
"paymentInformation” : {
"card" : {

“number"” : { },

"securityCode" : {
"required" : false

}s

"expirationMonth" : {
"required" : false

}s

"expirationYear" : {
"required" : false

}s

"type" : {
"required" : false

}

}
}
}
}

Response to Successful Request

JWT is returned.

Validating the JSON Web Token

When the system has returned the transient JWT, validate the token's authenticity. Retrieve the
public key signature that is part of the transient JWT and compare that signature with the public key
returned from Cybersource.
Follow these steps to validate the key:

1. Retrieve the public key ID (kid) from the transient JWT header.

2. Retrieve the public key from Cybersource.

3. Validate the public key signature.

Digital Accept Secure Integration | Flex API | 15

Retrieving the Public Key ID
A JSON Web Token (JWT) includes these three elements:

* Header
* Payload

« Signature
Each element is separated by a period (.) in this format: header.payload.signature.

The kid parameter within the JWT header is the public key ID. You use this ID to request the public
key using the /flex/v2/public-keys/{kid} endpoint.

Decrypting the JWT Header

The JWT is Base64-encoded. You must decrypt the token before you can see the kid parameter.

Example: Header

eyJraWQ G J6dSI sI nFszyl 61 1 JTM U21 nOK

Example: Decrypting Header on the Command Line

echo 'eyJrawQ G J6dSI sl nFszyl 611 JTM U21 nOK' | base64 --decode

Example: Output

{"kid":"zu", "al g":"RS256"}

Retrieving the Public Key

When you obtain the kid value from the JWT header, use that value to retrieve the public key. To
retrieve the public key, send a request to the /flex/v2/public-keys/{kid} endpoint.

The public key is returned as a JSON Web Key (JWK).
Request

Endpoiont: GET https://apitest.cybersource.com/flex/v2/public-keys/zu

Digital Accept Secure Integration | Flex API | 16

{}

Response to Successful Request

{
"kty": "RSA",
"use": "enc",
"kid": "zu",

"n": "ozmvkuGzWNHS9cEcC5PWwbG-dmSjPcoQFxEbgH_fBjkj_nfTTKshdiSq5ciulWEa_rrqQ2qwcSADNXtTzR
R1gfud-NvsM8V1t

T7XxDuVVQPTZoWLKa®BWXgQQ-1mCm1KdG1tYWccBOR1LOF-rb3DEEZySsHvqErYzYt4M_rqjEiK5Y9y1h3k1h5Yk4z
GLWchko3

JjiDS-pVevviWsQsN-Y3KuB19485G9P_MXLtfIWQ4wC4jlo9etdD _hgDfxX-hQy3wuwHfHifLdxvxiB8X5Is4m6DuY4
_7hS5RwX
Aj01QSd-zUYZNT_2yWVR56_jyiZEiOdgIm9QtLPZCTKzqsXoqzQ",
"e": "AQAB"

JAVA Example: Validating the Transient Token

The Java code below can be used to validate the transient token with the public key.

package com.cybersource.example.service;

import com.auth@.jwt.JWT;

import com.auth@.jwt.JWTVerifier;

import com.auth@.jwt.algorithms.Algorithm;

import com.cybersource.example.config.ApplicationProperties;
import com.cybersource.example.domain.CaptureContextResponseBody;
import com.cybersource.example.domain.CaptureContextResponseHeader;
import com.cybersource.example.domain.JWK;

import com.fasterxml.jackson.databind.ObjectMapper;

import lombok.RequiredArgsConstructor;

import lombok.SneakyThrows;

import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.http.ResponseEntity;

import org.springframework.stereotype.Service;

import org.springframework.web.client.RestTemplate;

import java.math.BigInteger;

Digital Accept Secure Integration | Flex API | 17

import java.security.KeyFactory;

import java.security.interfaces.RSAPublicKey;
import java.security.spec.RSAPublicKeySpec;
import java.util.Base64;

import java.util.Base64.Decoder;

@Service

@RequiredArgsConstructor

public class JwtProcessorService {

@Autowired

private final ApplicationProperties applicationProperties;
@SneakyThrows
public String verifyJwtAndGetDecodedBody(final String jwt) {

// Parse the JWT response 1into header, payload, and signature
final String[] jwtChunks = jwt.split("\\.");

final Decoder decoder = Base64.getUrlDecoder();

final String header = new String(decoder.decode(jwtChunks[0]));
final String body = new String(decoder.decode(jwtChunks[1]));

// Normally you'd want to cache the header and JWK, and only

hit /flex/v2/public-keys/{Rid} when the key rotates.

// For simplicity and demonstration's sake Llet's retrieve it every time
final JWK publicKeyJWK = getPublicKeyFromHeader(header);

// Construct an RSA Key out of the response we got from the /public-keys endpoint
final BigInteger modulus = new BigInteger(l, decoder.decode(publicKeyJWK.n()));
final BigInteger exponent = new BigInteger(1l, decoder.decode(publicKeyJWK.e()));
final RSAPublicKey rsaPublicKey = (RSAPublicKey)

KeyFactory.getInstance("RSA").generatePublic(new RSAPublicKeySpec(modulus, exponent));

}

// Verify the JWT's signature using the public key
final Algorithm algorithm = Algorithm.RSA256(rsaPublicKey, null);
final JWTVerifier verifier = JWT.require(algorithm).build();

// This will throw a runtime exception if there's a signature mismatch.
verifier.verify(jwt);

return body;

@SneakyThrows
public String getClientVersionFromDecodedBody(final String jwtBody) {

// Map the JWT Body to a POJO
final CaptureContextResponseBody mappedBody = new

ObjectMapper().readValue(jwtBody, CaptureContextResponseBody.class);

// Dynamically retrieve the client Library
return mappedBody.ctx().stream().findFirst()
.map(wrapper -> wrapper.data().clientLibrary())

Digital Accept Secure Integration | Flex API | 18

.orElseThrow();

@SneakyThrows

private JWK getPublicKeyFromHeader(final String jwtHeader) {
// Again, this process should be cached so you don't need to hit /public-keys
// You'd want to Llook for a difference in the header's value (e.g. new kRey id

[Rid]) to refresh your cache
final CaptureContextResponseHeader mappedJwtHeader =
new ObjectMapper().readValue(jwtHeader,

CaptureContextResponseHeader.class);

final RestTemplate restTemplate = new RestTemplate();
final ResponseEntity<String> response =

restTemplate.getForEntity(
"https://" + applicationProperties.getRequestHost()

+ "/flex/v2/public-keys/" + mappedJwtHeader.kid(),
String.class);
return new ObjectMapper().readValue(response.getBody(), JWK.class);

Populating the JSON Web Token with Customer Information

As soon as the transient token is validated, you can add the customer's personal information to the
token.

Follow these steps to populate the token:

1. Construct the JSON payload.

2. Generate the JSON Web Encryption (JWE) data object.

Constructing the JSON Payload

To construct the JSON payload, create a JSON dataset that includes these elements:

* data: The payload. This payload must include all required fields and can contain any or all of
the optional fields in the transient token's capture context.

* context: The capture context from the transient token. The transient token's payload is the
claimset

* index: Specifies the recipient key used.

Digital Accept Secure Integration | Flex API | 19

The payload should follow this format:

{
"data": {
[Claim set field data]
¥

"context": [Claimset (payload) extracted from the transient token],
"index": @ //In this case, there 1is only one recipient for the JWT, so this value
must be set to O.

}

Example

"data": {
"paymentInformation™: {
"card": {

"number"”: "4111111111111111",
"expirationMonth": "12",
"expirationYear": "2031",
"type": ""
"securityCode":

}
}s

"orderInformation": {

"amountDetails": {
"totalAmount": "102.21",
"currency": "USD"

}J

"billTo": {
"firstName": "John",
"lastName": "Doe",
"address1": "1 Market St",
"locality": "san francisco",
"administrativeArea": "CA",
"postalCode": "94105",
"country": "US",
"email": "test@cybs.com",
"phoneNumber": "4158880000"

}
}J
"context": "eyJraWQiOiIzZyIsImFsZyI6I1JTMjU2In®.eyImbHgiOnsicGFRaCI6Ii9mbGV4L3YyL3Rva2Vu
cyIsImRhdGE
10iJyM1h5b2QxUk9SdUEyajFwUnABcUpoQUFFSkFVUVN1QzZzZXFkVHpMaUJuTmZrMz1jO0XIQSHINQTRSSEZ1QXRrS
©JiRmpgaotH

Digital Accept Secure Integration | Flex API | 20

V2tmNUVjNHhBRVBMTzc@bONsdjhneUhueFJOb1E1dHYWVnpNYUSpOWNxd21EWmIReEXENW5pVk1SWGMiLCIvemlnal
4i0iJodHRwc
zoVvL3R1c3RmbGVALMNSYmVyc291cmN1LmNvbSIsImp3ayI6eyJrdHkiOiJSUGEiILCI1IjoiQVFBQiIsInVzZSI6ImV
uYyIsIm4iOi
JqY1A4dHpIX21FQUloYUdmcXJI3TEQtZHZsbTZSLXgySWVaVDNweUU2YXF2SkxkYOh4dbzRQZktOSXpMZOh+ZEIVTJZE
NGxFc2dTY3N
0T1RVOVVGVVQYVERpZU1aMVIjNW5rc1Nub21YcmR5MFJscUlrS3BCa2h1WXRsSWM40TZQb3JYVENmUk45MmpX0XgzN
2dUUnRBc212
QXJQR2pOWGV4QnhaN29SWkFXRVY5Yy1FYVFybU55N2ZzTnJIXdEZMR2XxVbXdEQO50NEVERXdjalWd3ck53U1IQaHpPQk
J5UWFvenB6V
1hXSVctS3RRb20tSHFfTmk2YUNOMXkwdWVLZjFkZ@dyUHpibDVEWVNFYUJtM3gzdGZzTmM3MXVQbGIXZzYOLU83SNn1
McFJIWVU5UYn
RINC1ONWNic®ZaMnZBeGYWWTdWRNRaclZiROZTRMFLQjZPWVdWVNcilCIraWQiOiIwOG1HZEN2Z21CWEM4YXd6UOSz
WjRoUmShbE1L
KTzVvMSJ9fSwiY3R4IjpbeyIkYXRhIjp7InRhcmdldE9yaWdpbnMiOlsiaHROcDovL2xvY2FsaG9zdDozMDAwIiwia
HROcDovL2xv
Y2FsaG9zdDolMDAwWI10sImimT3IpZ21luIljoiaHROCHM6LY90ZXNOZmx1leC5jeWI1lcnNvdXJIjZS5jb20ifSwidH1wZS
I6ImimLTAuUM
TEUMCJ9XSwiaXNzIjoiRmx1eCBBUEkiLCJ1eHAi0jE2MDQ2MTc4MjgsImlhdCI6MTYWNDYXNjkyOCwianRpIjoiR1o
xb1dCbTVBbH
kzendwOC3J9.ZF9-CG_FvIQTMocIMwCBH6IMWBiFfl-ufPjOTdXFuTSpusL6fAsxnyxdlf6V6i6w0OOPDEgV6SY - 2MWP -
Q600WAFFZFfm
R1y3r13Tig9Ldql4WOp8zhIb6k1LDO1PYWeyXYZOXqRQLO _eYT1iDrV66P72PVX6DqCeolFYnh_csEcAChmyBVRqI2
Gxd9zelALgB
NU6WeHiN8FT36xRHHruxRI2hBCI_OE@p9haQjuD4qtfkogrfhnt2mFpiC4s0@jOyHaHCgiVm5NPuPecpS7t47cjsSG6
PfIHNbBAjdI
VcNpmFFyH6sCLRp10OgWOvPYw4nUOgtq7y_voHe_nOal6eHFr4A",

"index": @

Generating a JSON Web Encryption Data Object
The JSON web encryption (JWE) data object is built using these elements:

* header: Include the kid and alg parameters.
* Content Encryption Key (CEK): The unique encryption key used to encrypt the token.
* ciphertext: The encrypted JSON payload.

e initialization vector: A Base64-encoded randomly generated number that is used along with
a secret key to encrypt data.

* authentication tag: Created during the encryption, this tag enables the verifier to prove the
integrity of the ciphertext and the header.

The payload should use this format:

Digital Accept Secure Integration | Flex API | 21

header. cek. cyphertext.initialization vector.auth tag

For more information about JWE data objects, see RFC 7516.

Example

Important: Line breaks have been added for readability and formatting.

eyJraWQiOiIwMFN2SWFHSWZ5YXc40TdyRGVHOWVGZE9ES2FDS2MxcSIsImVuYyI6IkEyNTZHQOO1LCIhbGci0i]
SUGEtTOFFUCJI9. juQDhF5XcZ1rDbupninzZilgHhephzWpa8FumH4KrsDOyF1tCODOL8WfpSyd5VGIewb4I1IipmS
B5vVO03Cb6FrNLipjFq-0exFRwWSK92NbB88ySFO-7FyvPddiqaQFkA81xn8nwdoHMwUsQuqe8Ts_krLsvYghmsc
xXKkwcEKgxoWbmD-yEfvKxGyHACLprAKLm-xusexaJLF420TxYuEhzzrSe6MR110zXuk2DAhtUL20HCgu8P3shg
JIBJqsOPcAFtwtLBRoDw1DtOybOHjd34Svbpgf 3ncFnDkEQYe5QeElEHaB2a@Nbwo61I1UETfhedHQc8IMtDmVu
Kk9pgCTg.uWrwGp2jZxZd5wFe.oFzZ3I2ry77jf-3wB_2q8G-0tbYJWQ]j88NdzRmVNO34JbreX5WOCju7ntvN8h
83NJIXEA_cQech2PEGIZV_tADBalLbSxJeitYKwaQhs_tRVrzrcd8Qhgs40ADfky2m310eV8bUG8D4GZBKRHL6ScL
f5p30b6H0a5fDYsU7IHNYCReiaiGPEx1Y41uwlL9QQxrfY2LTv74Pcqyh-B4byNxR5hTw3SIm7DT7YQL16_-2R0Oq
JhJoweTdDJItmJoM-LxKEij2TLgHBdqso9f036dfnOSHL11vG86C1-6DA9YFIZB3gLYnyomljZuGxUOPXDojUfXo
00pUj80I6CNQWdhKpCIX19s8xAhTAUYYdVWrEqFfBzd9S-4E-ZdyUGFxG7fLQuLZKQIeYBbGCSSLGSIXLOb15sK
0opIgqCTU7MSEN_F7zWOIwJ4-b80VSf_J180-hWle@43R1zBoMr3aGdXFIaLmVbEIzZTNeZrulYTTWWLbQlcLTXgAM
OyF1KmIrpg55VruvVR8i_ijuSMFzzTYuLut9ecvYbFFeUkUaUBihNXg4Np57Ix23gaJuMcPBgUqkH3nCTZQE7yQ
OynzO0-1ho_jAHylxcwV_DJhhAJnACO5HUDAjVKmr-GKgxvDZWVzrqjFkPArX81leRSnn9Dr2Ahozehn9FTB37AJV
3BEC217WMVAbQE1EpPVGTdvVDhH2x1LAHgHTBeQakzY4e81h2L3EDCmdjx_yZdZOUUSG3mLQSp8640V5pHC2X22
ZRadGbrLwnA-m2W1oDZIzh2t5nZdJhePnNzHbNXTFOxWSk1lxdgldfG52FVSH-cKiJQnDhmCH6nPVK7NKnLOVRuUZ
-uu0a4PJQDoT2H8eSjpvo8fo9rwfLYmQJa042t70SE95bER9k10ITUM83LNA3bxhWk5en2UFgcip3z3K10mFwPL
VNCpzitULzAEHWBI1rBOaGXkQilbIMx0o9XZNRENFyYALX3-aruXIe47pwAyOEX-hd-3Y7UsxBVYB86se51q2-VU
1dROzj6cwZvrTxhFM_gAsDOHisAGa6E3n3n3wlJAvjuZdHRoQqaTOOYFmTdSbocmTOEUammYmBjagKKycOzgmoZ
SaYpffQl_RO6tEZkebuhIrPQUTWLWivZMtnWES8O16VIRX4cG30fzaRYs@GVPWUmMD1rSbM8FUgMIEaAUTNg5T9Cdk
ixegRmszDELzNjNTILe2WwxJG4Kb_1-yGMR1hFys4FEwVMk8AWIJRDpwGOjdmHkBz917z1PFdIcidbIpmgH7m5R
D6kwRSxaG_BIWDc2IkIFyNa2G_-gHjQh_utablUOL9CXxxFCKDOUHojtsHneFtl1bhV2P_sfYYhtZo5X10KAAEXq
mOSY2boYyjOhM1KNuVqukrnWG6-bV-LBf9DvpYNKO9YeU6rYD_WOxSQ11igqVVvEK8n9xLCmQQKsK2Xj2WGh7wWTQ
TMh18hcsNENN3Log9DofAbOrCXqdREAshxg MOI5vGe@JIvIR9G]j6kAhKGFf2DYBgMynbb9jWInjCzFXBCgXXjTO
uCoZdz1VORbLXIBOOOFIfLfdtVLGKPLKizXaSQ8YrLiBATarkpO7WFSSF661vezwDZ1fDErA-0kijln2poKgDLY
L3VvNfX8vU33ef96VQc9I3auTpiWdONLa5ywORWREAjqad4pHYTEZDiLcDOVETt84 aon3U7co_8fAYrztokTIJ20
RuhN_xA@rV1MbOZIwWem-duqYLFLQlcwjxNwTdaberNy6bCg90tljd517nSbzZ6UpHrHDFO2LrM41NmQUX9tZFH
ypYJjFdgiKKgqgk-kTe3pq6ithsTPvcDvDkNgCSbOH_X30gqm2-0VXaGIcYBcmIdsbBt7VIuYVZ1I_214- 6glgvgQ
z9d5KaHyZeJimSXq0sbqUQzNKWC7_K81Z5XmqCPJIByr0OiROkO6iEe_poqRgVzHETHYmstAzUlgUvPD3XocZd1lHu
PHArQe6GddVmxnhTDVIMOTMXwKO3f0jGg7LMjWjUlk15X8xYZTk_HMo76IetU0df9BIoaMBqMHIkk936uzjIeil
1DbEb4ExLtpIeSoq_fnelAWoVEDMa_XoVKWCR5R7wTJjGyZKjJJkI6UqYQguS90095MZp8NOQadlwKCvztLbFKt
EU7sPz3pU50UVbn9cZS7WCzCUNWGXxb3P0ONTzPsP_MhD71JcuAEFSLS@5m1hkoNiYe_6pmLv8Rrgp71kFsTOIOU
rcUvwdIRikDOLdNbO5b-_ 6HjczDPzx9PaM_Zn-34mfOQPthWAfum3YvpmthuKxAWfdBChZXe90CMeBGewG1l7mKM
h9H5SP6suSyw-IFe7iBd338LVVPjRXif1rNsU631YXBu9Lz-1604cuGuYPVHPhHf41ifFXv1vi702wD7fbYn3cZ
55_yGVJIvcFPg60MUGIUSY5ncj-n7a8-IcGmSFpMtgnMclycJa_ONlvtwy jmOWvdzkUrBNC_OoCmH1LaG3XTRenL
_WYhzxDUdQQBuUSC3acFu28x3NL8cmR51qy7sBGUKcwt_0gX9ZoQyFzUTFOw.QgqKIuF8EnuhOTM8PVGEs8A

Digital Accept Secure Integration | Flex API | 22

https://datatracker.ietf.org/doc/html/rfc7516

Example Java Code

This Java example includes the code that can be used to generate the JWE data object:

package com.cybersource.example.service;

import com.auth@.jwt.JWT;

import com.auth@.jwt.JWTVerifier;

import com.auth@.jwt.algorithms.Algorithm;

import com.cybersource.example.config.ApplicationProperties;
import com.cybersource.example.domain.CaptureContextResponseBody;
import com.cybersource.example.domain.CaptureContextResponseHeader;
import com.cybersource.example.domain.JWK;

import com.fasterxml.jackson.databind.ObjectMapper;

import lombok.RequiredArgsConstructor;

import lombok.SneakyThrows;

import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.http.ResponseEntity;

import org.springframework.stereotype.Service;

import org.springframework.web.client.RestTemplate;

import java.math.BigInteger;

import java.security.KeyFactory;

import java.security.interfaces.RSAPublicKey;
import java.security.spec.RSAPublicKeySpec;
import java.util.Base64;

import java.util.Base64.Decoder;

@Service
@RequiredArgsConstructor
public class JwtProcessorService {

@Autowired
private final ApplicationProperties applicationProperties;
@SneakyThrows
public String verifyJwtAndGetDecodedBody(final String jwt) {
// Parse the JWT response into header, payload, and signature
final String[] jwtChunks = jwt.split("\\.");
final Decoder decoder = Base64.getUrlDecoder();
final String header = new String(decoder.decode(jwtChunks[0]));
final String body = new String(decoder.decode(jwtChunks[1]));

// Normally you'd want to cache the header and JWK, and only

hit /flex/v2/public-keys/{kRid} when the key rotates.
// For simplicity and demonstration's sake let's retrieve it every time
final JWK publicKeyJWK = getPublicKeyFromHeader(header);

// Construct an RSA Key out of the response we got from the /public-keys endpoint
final BigInteger modulus = new BigInteger(l, decoder.decode(publicKeyJWK.n()));

Digital Accept Secure Integration | Flex API | 23

final BigInteger exponent = new BigInteger(1l, decoder.decode(publicKeyJWK.e()));
final RSAPublicKey rsaPublicKey = (RSAPublicKey)

KeyFactory.getInstance("RSA").generatePublic(new RSAPublicKeySpec(modulus, exponent));

// Verify the JWT's signature using the public key
final Algorithm algorithm = Algorithm.RSA256(rsaPublicKey, null);
final JWTVerifier verifier = JWT.require(algorithm).build();

// This will throw a runtime exception if there's a signature mismatch.
verifier.verify(jwt);

return body;

}
@SneakyThrows

public String getClientVersionFromDecodedBody(final String jwtBody) {
// Map the JWT Body to a P0OJO
final CaptureContextResponseBody mappedBody = new
ObjectMapper().readValue(jwtBody, CaptureContextResponseBody.class);

// Dynamically retrieve the client Library
return mappedBody.ctx().stream().findFirst()

.map(wrapper -> wrapper.data().clientLibrary())
.orElseThrow();

@SneakyThrows
private JWK getPublicKeyFromHeader(final String jwtHeader) {
// Again, this process should be cached so you don't need to hit /public-keys

// You'd want to Llook for a difference in the header's value (e.g. new kRey id
[Rid]) to refresh your cache

final CaptureContextResponseHeader mappedJwtHeader =

new ObjectMapper().readValue(jwtHeader,
CaptureContextResponseHeader.class);

final RestTemplate restTemplate = new RestTemplate();
final ResponseEntity<String> response =
restTemplate.getForEntity(
"https://" + applicationProperties.getRequestHost()
+ "/flex/v2/public-keys/" + mappedJwtHeader.kid(),
String.class);
return new ObjectMapper().readValue(response.getBody(), JWK.class);

Digital Accept Secure Integration | Flex API | 24

Populating the Token Request

When you have created the JWE data object, insert that object into the body of a request, and send it
to the token endpoint.

Production Endpoint: GET https://api.cybersource.com/flex/v2/token
Test Endpoint: GET https://apitest.cybersource.com/flex/v2/token

Request

Important: Line breaks have been added for readability and formatting.

{eyJraWQiOiIwOHBNSnRoMnFRazBGZDZNcWtHamZRSOFrOFZ0aDNncCIsImVuYyI6IKEyNTZHQOOiLCQ
hbGci0iJSUGEtTOFFUCJ9.CXY9bgD1uFtK40xcJiENdI6VkKusaW8xa5SkzWLfglzyCgijwvlEYvZleqv
Un4VgNQPuUj5cVHZLIINIQR4AEI-KAIULsSxng5xeyEwIHODX9SUEIICAs8p9dDiUDts671fzLsQvUHkdT
nk2z4dpnctz5DrF3YX1D0ghkn3M74N2Fq_H81p@C5e5uc80E-BOjDWNjY4zpDZO3wFoSTKRjIZ6mALAT
5tf-GAGG11HXVIM4THRGuUd-tR1IgRpmxORDNgBXe55IVhT7_5wA-9s0Sk1l6ylricRqnI@BeKchB_B1Z6
v8K3pyl363EUDRSHjO9T1G951h6Jcv_dpTYHbigqcx9kjA.c2M3S4GcXaQtSKB8.dCigN1XaPb8owIz56z
zIEenXd7wlfIwWdXwj_n_rMsufiQXf3_nKSLJaHOB_3fODEz_AIkXdfmfPkMtwxTZcBXvQVcgBv1IlwN
18FNEmEi©59b0CD730DPYyX1x7NFnnNmsEeu90PQfe6C_vsnQuSMMBgYddeYn1lyOmQDxmsRIjB8_ fIckq
SnW91hP7HeJZny-s1EQH1Ypg@CZkePCndgBGEG1BrQDfZc5iKbn4nRb9fW7XC_70VOAjN-r2Wkf1jTI5
w6fZbmseqrpKBEsMKM44Vs_8cTyzbrDU2jome3U42fc8vMVYq2Z6Z_ tMSOR_7Qrt8IErzRO2E-24w04d
gP0o1GhJKVFcvn3fGW590Q0W0qc0Q4oMWFQemYgN_LdATWFEXSKAE - FVSRWcHQCHFAYO _SKA4Tk4iTexitF
GAw4GXQsrKf1FhUZto6AGU62RCPzYuSY3TWosuAcYP5wVhMaajCd23sSSkdFR2uGtyru88UwEwWVBpUSt
Ypc3_Je80LX6azVIS73IDYky8IYhKLYEDIamI3bkIOFZUtGFWI2ybM2@ILIMGbkvV1l 1wHEGpj6upCh3
INCOrMatRjb4hsXwlzLLQOBYizNDNgqkbIjM uBbu692ymYNgbtfInPOTt6I_am5_ZYsojoX88mqOlvU
dM8-LY1rMA2hEXc5ALXxh6cm2njMbUXXBF jrjEXko6znH905v8tzHOBhR154MWMrer8FXHtvr17bbzZQg9o
ioRUsrRL6ubTLaFFeHfihAA9DK4AgqmiQtrMIHyIzIr5d7nPhZMHcgItGZS3jQUOuU8 f-Md4QH9HA6356k
sQut6OMYFDqSOBOXNxeRCKA2eQtusP8LBILH1JISiBvjs_XzLDXei9uo221P18TpPHFmtxFuAb--fseM
T7TOUQMaLANIMCCAP95KGpIOixCVoE2mnmCBoebEC698h1V_93w2us1HN3nF2arFmn4V6qRsST2pMNfc
0c_30180-g-e2IPgajmE-hQRo3BGqICFxOP4XCOGMtIhfYADhA9q60WjFSpIqCIcAOTIkUuE8yP3i5hUl
e8ELPKr-0YQHUWNOLIM7c6ypDtSjtoehFC5-w54sMEEXYOLiM3bI4VmYPIrwMd1liDOiHhXJITFQBMDKiu
SOGOVAYyPMsu5RSQN10w5rK8V41A-Q4uVcIQOyGlZO1wTbIAVEFeEUKaApWiEGN9gOCewSSou@9al cQXe
Owiv8MaBvzad4MHW-NGYFxCbTIpMYDpTlax3L_Lht3xsPURupAJj-0_ z3jdvNFV3Q6-DQfPD1g0cDqVKG
MHgnH3tUBi24 1h1J8Mv9ji@YveaewQJIgYFXHmJ11PLpRGE9jDLrPwXtdYUMpb-Jg4EZ6Ba40 U4zly6
KUJF1xyJ9hh74CGgzbiVSz-007K1_7-zUPeI_gkFRfd2TaRB3PaqtWéw6-B50SGQpHkshLX_hbRKupcQ
nFekKbTd_BySBKIVOzBIGxsOGXyA@OeBygK-frFFE21dM3hbKEHVHKa2JsCgeeHztRP0i3747iT8v41Xa
2pVOPtzzKbDEJVPSFYmM6B2pFIvX4uviWXS8DizsPm8CNwgzhUXYJIBXxaXI498ZQzwuwBPPmx2ovJoN-rh
kVZzGANkqVRRDLA-fcfuUkxCHzVTxdFi65LBQ-SJJI5_ g4NMhWkpsvD5HbS3simIM3gke2GHeDzOV6MbT
ZNck4CJCOQdh6ZTyQMILP12Q5SUnxhuHVQouF11IV14nm3SpifhiVkKao26sj7drn8x6TR5PhGylwys3
Z961XG9cyBZGvne5Keigu5hLY7g@GQR8SQuUI8IMS5MRNWNEFFESYO8Qafg6jax540pR34K320PZtPyZgi
SOVX3TRI6QiKeI3 OW5phuqUgxnK-UhU259r9E3ckDUFM22I1ZEXWWjmKObQqWE_FGZHIXUfuXxzMmM_
I7BI6nQgxZ4KQR8ZmZOIDoPq7VdOSpIZ-7PqcJ07SE-LFFPAnGYMPeXVS3el sOXqoRxoweho@6HAKQS5
RoFC8srmO-LC-wxXHMowF_L63PDEY_pp01YZnAZQHJatt3370CqvDrgw6S0sYxCTuroqJlAaqzbcFUXBA
Zv173Z_dfef8fGLbyImul2SmB-G_JOCKoFtr-fQ9GwIbalERZHUzyBWF9-cK@61SyhbLx1D3D1_KkmPp

Digital Accept Secure Integration | Flex API | 25

piz8cGhrNSUfjNNilCzTSxCmRCQK7IgvO5YOHVNuU4SSTZi2NHgxFsEradx_9w077ZHAQ6Mxsx0_xqk9L
19003BhgZXL8zsCouJWkLrl-sf5hBQO_zmyqDJFUyQzeFJhae08jn5xVOIBS9gEPfeogn5xP5-HLY3MQ
TpceBXobVvhfiTfKdaBkqEAUUdmAEuou6Jwwy24FbAugrhdjaXr2_ 5RLdmy7xuy6EGAs_T7HgkMgCrLk
row3zpTXSjiiBfqaoLFWUEVCFczeW33YUnOhO5c jGfpwI1IE8NQ-A6TV3TXKzrxIdRIWWGMUKE--fPi8
4LSOGMLLI_cB1_1KXKsTw9-Q-mEwk99PYr8L-WeQev_z1EVgq3L1GSshefKySXUKV4-CxtthRcMOZhw4
eKIMh4dtYuqlcmTaSK5YXtLIsc5bGcWAXOAM_KOxX9Ew1X_Ugd4W71tFHanGQ-MXnoPG2atLJISmwODD2yW
ftB2zedcU3epXK83K9LZG3xoeYVh_j-9Xmd-ToaN4firdX4WhVU4herAOTBgqgQm-pI5U-NztXu2mdCgN
tX5ZwKIblwzGTs8ZkbkeqJIXtP1FO1BRAqONGcg27770gnoy21ehJZiPQTESRhe7wQ_YOniIWy1P9AV3
PJIVY3Pk-GpRctZ0Oc8WkBdTPhOyczVZs5GbBAsOeYweo9i3EK1VwloxIFMY6MQD7e300K2_ OEyfq961gq
GYCJf4IzJsoP4zJAKBr71NPpqLKZbkIRPerzHWmDFCfoCfy9Sp7cHLBACWUMD32JIjIyVUCOCjt8gOW5
z0szUDBNPNchII2mXWYFFxxc_bN_cdpuBCXW5R42u6p_J80gQxLM7PCd91QQ9WgS1cKG_1rabKdMIYK1
1eDi7DKK_FPBXEFbf9wMwX02UOkaQEMEQbelLb-cMn60jiQOpyPVMsMBFrvkiS3glaDebu-03hShHg52C
CZsA661_Y4ZXgNPZ5EeJeczUTFtj_L827Ff SDPX2m4@LLeDh_8zs1EfRh2x-_ PrFt2JGGZTjQOWzDHpr
H6DWEGPCEokQqV1v3RGYaz58VcBptWS16dXZEXnRAOM-PF2hwjy32pjTodIvcT2AARbWDeb-o0MUXpGL
B1CuklhrqtpWES-N150NPWRI6VK8XWcarrz7x_LESs9pS8mrWLDNXIsFdOMUA6ZTEwW1INSeaS CtuQGcC
TIAMSSpt6DHDt24bVLIPj19X3LzU3PgCei8wObEYOHNgsrLpM8Ps3EnucabbbSFRT8h1pVedRSRWUN2V
4C6CROeTuid7P-PorYoV8McomHuVcPqS6kvIi5gPwi8T-pybnjyDPgcQ50IAYHWVqVwWOEeC3hPMGXx1U5
T9IWeC2qvhzSZ8-Iov2k3MngNnhiLsxTuPVHNLNPhZ6UP-LHLE6VYA-40SVQ2d500tiFOt4H3PQ8B-jD
ZjFPEPQ-qv6K8fxtdNLja2belyv02v5ymYhCVjgL6DKLLAXD3ID30SI4WmSKBPtzScFrBHit1JdyGEEt
XJYE9FLXeo0Ji4Rpl1leOEXn6WH_7wqSxk9jGT78CeNIZCGZMavkKUESG80oUF-vxoRX1sh1LXD26T_B3g61l
5TLaAiCF-STJI5_ P99-8tWvzmdfDbXDYIAg60Ms940hiOMhNccT-IH8AUQpauPLaX9Vveew7bU28Qt8uq
SnkImQKbicr7L]_MTIeqogfGjpnVIPWolWQ3QoKSb72Ed90ahVimY13fPFAMS8GKiKNINI8sRPUbIM7D
8I0BfTZovesPcFhf80z9MP1IUXti9qpJ_T-axjhtMbZOKmQVCfoc@DP4h@9vySPiRkwx7bjQZnCV6fZs
4qLrKxTxpy6mbihIKAM-v3eZMU4-UoV_mzWP_Q5nclH@jO0190omLrFszXEXuIUrYl 7AUKNBiV7vjQ7F6
E7f4wQDjElazCYwuULc7QiJ_Q5J3rL5Q1l_UY9iGOdkyLGA6XKUTbtZFO1VgCOMUCQN677LmvXkkqGx1lvY
WDpQg9TuwNzcnIUoOE . Wb8jG4qNmCGq8MIcOTnfnQ

Response to Successful Request

JWT is returned.

Digital Accept Secure Integration | Flex API | 26

Microform Integration v2

Microform Integration replaces the card number input field of a client application with a
Cybersource-hosted field that accepts payment information securely and replaces it with a non
sensitive token.

You can style this page to look and behave like any other field on your website, which might qualify
you for PCI DSS assessments based on SAQ A.

Microform Integration provides the most secure method for tokenizing card data. Sensitive data is

encrypted on the customer’s device before HTTPS transmission to Cybersource. This method reduces
the potential for man-in-the middle attacks on the HTTPS connection.

How It Works

The Microform Integration JavaScript library enables you to replace the sensitive card number
input field with a secure iframe (hosted by Cybersource), which captures data on your behalf. This
embedded field will blend seamlessly into your checkout process.

When captured, the card number is replaced with a mathematically irreversible token that only you
can use. The token can be used in place of the card number for follow-on transactions in existing
Cybersource APIs.

PCl Compliance

The least burdensome level of PCI compliance is SAQ A. To achieve this compliance, you must
securely capture sensitive payment data using a validated payment provider.

To meet this requirement, Microform Integration renders secure iframes for the payment card and
card verification number input fields. These iframes are hosted by Cybersource and payment data is
submitted directly to Cybersource through the secure Flex API v2 suite, never touching your systems.
Browser Support

* Chrome 37 or later

» Edge 12 or later

* Firefox 34 or later

Digital Accept Secure Integration | Microform Integration v2 | 27

https://www.pcisecuritystandards.org/documents/Understanding_SAQs_PCI_DSS_v3.pdf

* Internet Explorer 11 or later
* Opera 24 or later

 Safari 10.1 or later

Getting Started

Microform Integration replaces the primary account number (PAN) or card verification number
(CVN) field, or both, in your payment input form. It has two components:

» Server-side component to create a capture context request that contains limited-use public
keys from the Flex API v2 suite.

* Client-side JavaScript library that you integrate into your digital payment acceptance web page
for the secure acceptance of payment information.

Implementing Microform Integration is a three-step process:

1. Creating the Server-Side Capture Context (on page 28)
2. Setting Up the Client Side (on page 32)

3. Validating the Transient Token (on page 34)
Version Numbering

Microform Integration follows Semantic Versioning. Cybersource recommends referencing the latest
major version, v2, to receive the latest patch and minor versions automatically. Referencing a specific
patch version is not supported.

Upgrade Paths

Because of semantic versioning, every effort will be made to ensure that upgrade paths and patch
releases are backwards-compatible and require no code change.

Creating the Server-Side Context

The first step in integrating with Microform Integration is developing the server-side code

that generates the capture context. The capture context is a digitally signed JWT that provides
authentication, one-time keys, and the target origin to the Microform Integration application. The
target origin is the protocol, URL, and port number (if used) of the page on which you will host the
microform. You must use the https:// protocol unless you use http://localhost. For example, if you
are serving Microform on example.com, the target origin is https://example. com.

Digital Accept Secure Integration | Microform Integration v2 | 28

http://semver.org/spec/v2.0.0.html

You can also configure microform to filter out cards by designating the accepted card types.

Sample Microform Integration projects are available for download in the Flex samples on GitHub.

1. Send an authenticated POST request to https://apitest.cybersource.com/microform/
v2/sessions. Include the target origin URL and at least one accepted card type in the content of
the body of the request.

For example:

"targetOrigins": ["https://ww. exanpl e.coni],
"al | onedCar dNet wor ks": ["VISA"],
“clientVersion": "v2.0"

Optionally, you can include multiple target origins and a list of your accepted card types. For
example:

"targetOrigins": ["https://ww. exanpl e.cont, "https://ww. exanpl e. net"]
"al | onedCar dNet wor ks": [" VI SA",
" MAESTRO',
" MASTERCARD"
" AMVEX",
" DI SCOVER",
" DI NERSCLUB",
"JCB",
" CUP",
" CARTESBANCAI RES",
" CARNET"
Il

"clientVersion": "v2.0"

2. Pass the capture context response data object to your front-end application. The capture
context is valid for 15 minutes.

See Example: Node.js REST Code Snippet (on page 36).
Important Security Note:

* Ensure that all endpoints within your ownership are secure with some kind of authentication
so they cannot be called at will by bad actors.

* Do not pass the targetorigin in any external requests. Hard code it on the server side.

Digital Accept Secure Integration | Microform Integration v2 | 29

https://github.com/CyberSource/cybersource-flex-samples

Validating the Capture Context

The capture context that you generated is a JSON Web Token (JWT) data object. The JWT is digitally
signed using a public key. The purpose is to ensure the validity of the JWT and confirm that it comes
from Cybersource. When you do not have a key specified locally in the JWT header, you should follow
best cryptography practices and validate the capture context signature.

To validate a JWT, you can obtain its public key. This public RSA key is in JSON Web Key (JWK) format.
This public key is associated with the capture context on the Cybersource domain.

To get the public key of a capture context from the header of the capture context itself, retrieve the
key ID associated with the public key. Then, pass the key ID to the public-keys endpoint.

Example

From the header of the capture context, get the key ID (kid) as shown in this example:

{
n ki dll: n 3gll,
"al g": "RS256"
}

Append the key ID to the endpoint /flex/v2/public-keys/3g. Then, call this endpoint to get the public
key.

! Important: When validating the public key, some cryptographic methods require you to
convert the public key to PEM format.

Resource

Pass the key ID (kid), that you obtained from the capture context header, as a path parameter, and
send a GET request to the /public-keys endpoint:

* Test: https://apitest.cybersource.com/flex/v2/public-keys/{kid}

* Production: https://api.cybersource.com/flex/v2/public-keys/{kid}

The resource returns the public key. Use this public RSA key to validate the capture context.

Digital Accept Secure Integration | Microform Integration v2 | 30

Example

eyJraWQ O | zZyl sl nFszyl 61 | JTM U2l n0. eyJnbHgi Onsi cG-0aCl 61 i 9nbGV4L3YyL3Rva2Vucyl sl m
RhdGEi O | 2bUFLNTNPNVpGTUK5Y3RobWZnd2do QUFFRGNgNUSQYzcxel Er bnmBr e DN6WSt LOTVWXRc5bThm
QMNs4czl TRXBt T21z MivhbEX5NkhHZ290QOJEW VI N3ZUSGQBYTR5a2t NRDI NVHhgK3ZoWKVDUNRDaDhVY1
dWVUNZW ZnbTELUXVFMKEI LCIJvem naWli O JodHRwezov L3Rl ¢c3RmMbGVALNNSYmyc291cmNl LniNvbSI s
| mp3ayl 6eyJr dHki G JSUOEI LCII | j oi QVFBQ | sl nVzZSI 61 mJuYyl sl mii G JyQmzwdDRj ed kcVZwT0
prmvTl JQXcwWULJCNUZgNOx Mzj AAUOROVMINy Uj | aaj A2bEYWTVce1aUpZb3F6R3ROANBI MiFZbFN6LVRs SDdy
bVNTUEZI e TFI@Bf Z0l 3eUR] nJORWNEanpLeVNZSTVCV] NsNHh6Qk5CNz RIdnB2Snt gcnd3QvZv VU4AwWML
RaT3FVcOpf Sylj TOxpYzVXVOZhQTEy OUt hWFZr ZFd3N3c3LVBLdnMMInpj eGwy VO5STUI zTS1ZQOXxCb3FC
dkdCSk50Yy1luMLl BNUshaz B2NDdi YUs WWIHQXRf WEZ0Zd t Zk phVUVUTVBWIVOT QriRhVim@0d 1 Ng UFNaOH
FMOGKk z\WUd e np2 MURDTUMRWURZRz 1 mX0t Nz Jj Ti 10a@GBRURWJI Zy TUt | Z3QyRDI wkJ1d2gzZI Nf S3VR
cl FWIvdPel RnT3AzT2s3UVF&ZLE LCIr aWQ O | wOEJhWKIVkbj dKTUhj SDh1bkcxc1NDUVdx N2VWeWRLZy
JOf Swi Y3R4I j pbeyJkYXRhI j p71 nRhcndl dESyaWipbnM A si aHROcHVBLY93d3cudGvzdC5j b20i XSwi

bWZPcm naWti O JodHRwczovL3Rl c3RmbGVALMNS5YnVyc291cnNl LmNvbSJ9LCI0eXBl | j oi bWt MCAxX VB
AWl n1dLCIpc3M G JGhGV4I EFQSSI sl mv4cCl 6MTYxNj c30TASMBW aWFOI j oxNj E2Nzc4MTkxLCIqdGki

O J6SGLt Z25uaTVoN3pt dGYOI n0. GvBzyweJKI 3b2Pzt Ho9r ZXawx2T817nYqubgoxpedPsj gBYlgeTol9
R- CP_DkJXov9hdJZzgdl zI NmRY6yoi zi SZnGldpnZ- pCql | C06qr pJVEDob30O ef ROL0O3Gz7F5J1 LA TXSj

6nVWC5MRI cP032yt PDEX5TM 9YOhnBadJYnhEMMNn_paMhBwiLh2v6er f TkaBgd8n6r PvCNr WWOWoMlo TeF
xku-d27j | AA5RXqJW hJSN1MFquKa7THemvTX2t nj ZdTcr TcpgH xi 22w7MJFcnNXsbMouoaYi EdAdSI CZ
7LCXr S1Br dr _FWDp7vOuwgHN7 OALs G w8Qb GTaf F8w

Base64 decode the capture context to get the key ID (kid) from its header:

"kid": "3g",
"al g": "RS256"

Get its public key from /flex/v2/public-keys/3g:

{

"kty":"RSA",

"use":"enc",

"kid":"3g9",

“n":"ir7N 1Bj 8r xr 3co5v_JLkP309UxXZRX1L| ZFZeckguEf 7Gdt 5k GFFf TsynmKBesnBPe
801hwf kq7KmJ ZEZSuDbi JSZvFBZycK2pEeBj ycahwdCqOne M7 aKG2F_bhwWHr Y4YdKsp
_cSJe_ZMXFUqYnj k7D0p7cl X6CmR1QyM 41Aj b7NH 23uON7Pyf JQMPLX8HAdunE6ZwWK
DNcavgxONBVuWsnf sGvt ygKQxj eHr | - gpy MXFOe PeVpUl QOKVj mb5- em Vd2SbyPNne
NADGI GCmECYMyL5hEvnTuy Ay bwgVwuMRanyf Fgl bRer Al zcl T4] QBeZFwkz Zf QF7MJA6QQ' ,
"e": " AQAB"

}

Digital Accept Secure Integration | Microform Integration v2 | 31

Introduction to JWT
JWT (signed) Specification
JWK Specification

Setting Up the Client Side

You can integrate Microform Integration with your native payment acceptance web page or mobile
application.

Web Page

Initiate and embed Microform Integration into your payment acceptance web page.

1. Add the Microform Integration JavaScript library to your page by loading it directly from
Cybersource. See Version Numbering (on page 28). You should do this dynamically per
environment by using the asset path returned in the JWT from /microform/v2/sessions. For
example:

ctx": |

"data": {
"clientLibrary":
https://testflex. cybersource. coni m crof orm bundl e/v2/flex-mcroformmn.js,

o Test: <script src="https://testflex.cybersource.com/microform/bundle/v2/flex-
microform.min.js"></script>

o Production: <script src="https://flex.cybersource.com/microform/bundle/v2/flex-
microform.min.js"></script>

2. Create the HTML placeholder objects to attach to the microforms.

Microform Integration attaches the microform fields to containers within your HTML.

Within your HTML checkout, replace the payment card and CVN tag with a simple container.
Microform Integration uses the container to render an iframe for secured credit card input. The
following example contains simple div tags to define where to place the PAN and CVN fields
within the payment acceptance page: <div id="number-container" class="form-control"></
div>. See Example: Checkout Payment Form (on page 36).

3. Invoke the Flex SDK by passing the capture context that was generated in the previous step to
the microform object.

var flex = new Flex(captureContext);

Digital Accept Secure Integration | Microform Integration v2 | 32

https://jwt.io/introduction
https://tools.ietf.org/html/rfc7515
https://tools.ietf.org/html/rfc7517

4. Initiate the microform object with styling to match your web page.

After you create a new Flex object, you can begin creating your Microform. You will pass your
baseline styles and ensure that the button matches your merchant page. var microform =
flex.microform({ styles: myStyles 1});

5. Create and attach the microform fields to the HTML objects through the Microform Integration
JavaScript library.

var nunber = m crof orm createFiel d(' nunber', { placeholder: 'Enter card
nunber' });
var securityCode = nicroformcreateField('securityCode',
{ placeholder: "eee' 1);
nunber . | oad(' #nunber - cont ai ner') ;
securityCode. | oad("' #securityCode-cont ai ner');

6. Create a function for the customer to submit their payment information, and invoke the
tokenization request to Microform Integration for the transient token.

Mobile Application

To initiate and embed Microform Integration into native payment acceptance mobile application,
follow the steps for web page setup, and ensure that these additional requirements are met:

* The card acceptance fields of PAN and CVV must be hosted on a web page.

* The native application must load the hosted card entry form web page in a web view.
As an alternative, you can use the Mobile SDKs hosted on GitHub:

* i0S sample: https://github.com/Cybersource/flex-v2-ios-sample

* Android sample: https://github.com/CyberSource/flex-v2-android-sample

Transient Token Time Limit

Transient Token Time Limit

The sensitive data associated with the transient token is available for use only for 15 minutes or until
one successful authorization occurs. Before the transient token expires, its data is still usable in other
non-authorization services. After 15 minutes, you must prompt the customer to restart the checkout

flow.

See Example: Creating the Pay Button with Event Listener (on page 38).

Digital Accept Secure Integration | Microform Integration v2 | 33

https://github.com/Cybersource/flex-v2-ios-sample
https://github.com/CyberSource/flex-v2-android-sample

When the customer submits the form, Microform Integration securely collects and tokenizes the data
in the loaded fields as well as the options supplied to the createToken() function. The month and year
are included in the request. If tokenization succeeds, your callback receives the token as its second
parameter. Send the token to your server, and use it in place of the PAN when you use supported
payment services.

See Example: Customer-Submitted Form (on page 38).

Transient Token Response Format

The transient token is issued as a JSON Web Token (RFC 7519). A JWT is a string consisting of three
parts that are separated by dots:

* Header
* Payload

« Signature
JWT example: xxxxx.yyyyy.zzzzz

The payload portion of the token is an encoded Base64url JSON string and contains various claims.

! Important: The internal data structure of the JWT can expand to contain additional data
elements. Ensure that your integration and validation rules do not limit the data elements
contained in responses.

See Example: Token Payload (on page 40).

Validating the Transient Token

After receiving the transient token, validate its integrity using the public key embedded within the
capture context created at the beginning of this flow. This verifies that Cybersource issued the token
and that no data tampering occurred during transit. See Example: Capture Context Public Key (on
page 41).

Use the capture context public key to cryptographically validate the JWT provided from a successful
microform.createToken call. You might have to convert the JSON Web Key (JWK) to privacy-enhanced
mail (PEM) format for compatibility with some JWT validation software libraries.

The Cybersource SDK has functions that verify the token response. You must verify the response to

ensure that no tampering occurs as it passes through the cardholder device. Do so by using the public
key generated at the start of the process.

Digital Accept Secure Integration | Microform Integration v2 | 34

https://tools.ietf.org/html/rfc7519

See Example: Validating the Transient Token (on page 41).

Using the Transient Token

After you validate the transient token, you can use it in place of the PAN with payment services for 15
minutes. See Transient Token Time Limit (on page 33).

When the consuming service receives a request containing a transient token, it retrieves the
tokenized data and injects the values into your request before processing, and none of the sensitive
data is stored on your systems. In some scenarios, the jti value contained in the JWT transient token
response must be extracted and used instead of the entire JWT.

Connection Method Field

Simple Order API tokenSource_transientToken
SCMP API transient_token
REST API with
Transient Token JSON | "tokenInformation": {
Web Token
"transientTokenJwt":

"eyJraWQiOilwNzRsM3p5M2xCRWN5d1gxcnhXNFFoUm]FNXJLN1NmQil
sImFsZyl611JTMjU2In0.eyJkYXRhIjp7ImV4cGlyYXRpb25ZZWFyljoiMjAyM
SIsIm51bW]lcil6ljQxMTExMVhYWFhYWDEXMTEILC]leHBpcmF0aW9uT
W9udGgiOilwNSIsInR5cGUiOilwMDEifSwiaXNzljoiRmxleC8wOCIsImV4c
CI6MTU40DcwMjkxNSwidHIWZSI6Im1mLTAuMTEuMCIsImlhdCI6MTU4
ODcwMjAxNSwianRpljoiMUUOQONMSUwW4NFFXM1RPSTFBMOpUU1RGM
TZGQUNVNkUwWNU9VRVNGWIRQNUhIVK]DWTQwUTVFQjFBRUMzNDZB
MCJ9.FB3b2r8mjtvqo3_k05sRIPGmCZ_5dRSZp8AIJ4u7NKb8E0-6ZOHDw
EpxtOMFzfozwXMT]3C6yBKOVFIPTIG6kydcrWNheE2Pfort8KbxyUxG-PY
ONY-xFnRDF841EFhCMC4nRFvXEIvlicLnSK6opUUe7myKPjpZI1ijWpF
ON-DzZiVT8]X-9Z1ar]q2010S61Y3912xLJUKi5c2VpRPQOS54hRr5GHdG]2f
V8JZ1gTuup_qLyyK7uE1VxI0aucsyH7yeF5vTdjgSd76Z]10UFi-31j5kSLsiX
4j-DOT8BENT1DbB_hPTaK906qqtG]s7QEeW8abtnKFsTwVGrT32G2w"

}

REST API with JSON
Web Token ID "tokenInformation": {

"jti":

"1E3GQY1RNKBG6IBD2EP93C43PIZ2NQ6SQLUIM3S16BGLHTY4IIEK5EB
1AE5D73A4",

}

See Example: Authorization with a Transient Token Using the REST API (on page 42).

Digital Accept Secure Integration | Microform Integration v2 | 35

Getting Started Examples

Example: Node.js REST Code Snippet

try {
var instance = new cybersour ceRest Api . KeyGener ati onApi (confi gj);

var request = new cyber sour ceRest Api . Gener at ePubl i cKeyRequest () ;
request. encryptionType = ' RsaCaep256'

request.targetOrigin = 'http://Ilocal host: 3000

var opts = [];

opts['format'] = "'JWI';

COnSO| e.|Og('\n*************** @nerate Key R Sk S b S S R O ')-

i nst ance. gener at ePubl i cKey(request, opts, function (error, data, response) {

if (error) {

console.log('Error : ' + error);

consol e.log(' Error status code : ' + error.statusCode);
}

else if (data) ({

console.log('Data : ' + JSON.stringify(data));

consol e. | og(' Capt ureCont ext: '+data. keyl d);
res.render('index', { keylnfo: JSON. stringify(data.keyld)});

}
consol e. |l og(' Response : ' + JSON.stringify(response));
consol e. |l og(' Response Code OF GenerateKey : ' + response['status']);
cal | back(error, data);

1)

} catch (error) {
consol e. |l og(error);

}

Back to Creating the Server-Side Context (on page 28)

Example: Checkout Payment Form

This simple payment form captures the name, PAN, CVN, month, and year, and a pay button for
submitting the information.

<h1>Checkout </ h1>
<div id="errors-output" role="alert"></div>
<form acti on="/token" id="ny-sanple-forni' nethod="post">
<di v cl ass="form group">

Digital Accept Secure Integration | Microform Integration v2 | 36

<l abel for="cardhol der Nane" >Nane</ | abel >

<i nput id="cardhol der Nane" cl ass="form control"
nane="car dhol der Nane" pl acehol der ="Nanme on the card">

<l abel id="cardNunber-|abel ">Card Nunber</| abel >

<di v i d="nunber-contai ner" class="formcontrol"></div>

<l abel for="securityCode-container">Security Code</I abel >

<di v i d="securityCode-contai ner"
cl ass="form control "></di v>

</ di v>

<di v class="formrow'>
<div class="form group col - md-6">
<l abel for="expMnth">Expiry nont h</I| abel >
<sel ect id="expMonth" class="formcontrol">
<opt i on>01</ opt i on>
<opt i on>02</ opt i on>
<opt i on>03</ opt i on>
<opt i on>04</ opt i on>
<opt i on>05</ opt i on>
<opt i on>06</ opt i on>
<opt i on>07</ opti on>
<opt i on>08</ opt i on>
<opt i on>09</ opt i on>
<opt i on>10</ opt i on>
<opti on>11</opti on>
<opti on>12</ opti on>
</ sel ect >
</div>
<div class="form group col - rd-6">
<l abel for="expYear">Expiry year</| abel >
<sel ect id="expYear" class="formcontrol">
<opt i on>2021</ opti on>
<opt i on>2022</ opt i on>
<opt i on>2023</ opti on>
</ sel ect >
</div>
</div>

<button type="button" id="pay-button" class="btn
bt n- pri mary" >Pay</ but t on>

<i nput type="hidden" id="flexresponse" name="fl exresponse">
</fornmp

Back to Setting Up the Client Side (on page 32).

Digital Accept Secure Integration | Microform Integration v2 | 37

Example: Creating the Pay Button with Event Listener

payBut t on. addEvent Li stener (' click', function() {

/1l Conpiling MM & YY into optional paraneters
var options = {
expi rati onMont h: docunent. querySel ect or (' #exphMont h') . val ue,
expirationYear: docunent.querySel ector('#expYear'). val ue
b
/1
m cr of orm creat eToken(opti ons, function (err, token) {
if (err) {
/1 handl e error
consol e.error(err);
errorsQut put.textContent = err.nmessage;
} else {
/1 At this point you nay pass the token back to your server as you
Wi sh.
/1 In this exanple we append a hidden input to the formand submit

consol e. |l og(JSON. stringi fy(token));
fl exResponse. val ue = JSON. stringi fy(token);
formsubmit();
}
1)
1)

Back to Transient Token Time Limit (on page 33).

Example: Customer-Submitted Form

<scri pt>
/1 Variables fromthe HTM. form
var form = docunent. querySel ector (' #my-sanple-form);
var payButton = docunent. querySel ector (' #pay-button');
var fl exResponse = docunent. querySel ector (' #f | exresponse');
var expMonth = docunent. querySel ect or (' #expMont h');
var expYear = docunent.querySel ector (' #expYear');
var errorsQut put = docunent. querySel ector (' #errors-output');

/1 the capture context that was requested server-side for this transaction
var captureContext = <% keyl nf 0%
/1l customstyles that will be applied to each field we create using
M crof orm
var myStyles = {
"input': {

Digital Accept Secure Integration | Microform Integration v2 | 38

"font-size' : '1l4px'
"font-famly': 'helvetica, tahoma, calibri, sans-serif',
"color': '#555'
}
":focus': { 'color': 'blue' },
':disabled : { 'cursor': 'not-allowed 1},
"valid : { "color': '#3c763d" 1},
"invalid : { 'color': '#a94442' }
I 5
/1 setup M croform
var flex = new Fl ex(captureContext);
var mcroform= flex.mcrofornm({ styles: nyStyles })
var nunber = m crof orm createFiel d(' nunber', { placeholder: 'Enter card
nunber' });
var securityCode = microformcreateField('securityCode', { placehol der
teeet 1)
nunber. | oad(' #nunber - cont ai ner') ;
securityCode. | oad(' #securityCode-container');

/1 Configuring a Listener for the Pay button
payBut t on. addEvent Li stener (' click', function() {

/1 Conpiling MM & YY into optional paranmiters
var options = {
expi rati onMont h: docunent. querySel ect or (' #expMont h'). val ue,
expirationYear: docunent.querySel ector (' #expYear'). val ue

)i
1/
m cr of orm creat eToken(opti ons, function (err, token) {
if (err) {
/1 handl e error
consol e.error(err);
errorsCut put.textContent = err.nessage;
} else {
/1 At this point you may pass the token back to your server as you
Wi sh.
/1 In this exanple we append a hidden input to the form and submt
it.
consol e. | og(JSON. stri ngi fy(token));
fl exResponse. val ue = JSON. stringi fy(token);
formsubmt();
}
1)
1)
</script>

Back to Transient Token Time Limit (on page 33)

Digital Accept Secure Integration | Microform Integration v2 | 39

Example: Token Payload

{

// token id to be used with Cybersource services

"jti": "408HALHTRUSHXQZWLKDIN22ROVXJFLU6VLUGOZWL8PYJOZQWGPSOCUWNASNR59K4" ,
// when the token was issued

"iat": 1558612859,

// when the token will expire

"exp": 1558613759,
// info about the stored data associated with this token
// any sensitive data will be masked

"data": {

"number": "444433XXXXXX1111",

"type": "e@01",

"expirationMonth": "e6",

"expirationYear": "2025"

}

}

Back to Transient Token Response Format (on page 34).

Example: Token Payload with Multiple Card Types

"iss": "Flex/@8",
"exp": 1661350495,
"type": "mf-2.0.0",
"iat": 1661349595,
"jti": "1C174LLWIFFRO0VOVOIJIQOYOIB1IQP70ZNFA4TBI3V6H3AIOYOW1T6306325F91C0",
"content": {
"paymentInformation™: {
"card": {
"expirationYear": {
"value": "2023"
})
"number": {
"detectedCardTypes": [
"e42",
"036"
1,
"maskedValue": "XXXXXXXXXXXX1800",
"bin": "501767"
})
"securityCode": {},
"expirationMonth": {
"value": "o1"

Digital Accept Secure Integration | Microform Integration v2 | 40

Back to Transient Token Response Format (on page 34).

Example: Capture Context Public Key

"jwk":

"kty": "RSA",
"e": "AQAB",
"use": "enc",
"

" 3DhDt | HLxsbsSygEAGLhc Fgnwe4khTl Z6waV@n¥ZNl 83gl yj 1FVk- HSGDMa85e8RZFxUwgU_z QOKHLt ON
08SB5270hsJVE9wWgHNI Rol oi NPGPQYVXQZW2S1BSPxBt CEj A5x_- bcGbaeJdsz_cAE7Or | YkJa5Fphg9_p
xgYRod6JCFj gdHj 0i DSQxt Bsnt xagAGH DhWUoi |1 g71SN- f - gggaCpl Temdzl b5kk RvwmKMUANe4B36v
4XSSSpwdP_H5kv4JDz_cVI p_Vy8T3Af AbCt ROyRyH9i H1Z- 4Yy6T5hb- 9y 3l PD8vI c8E3JQ4qt 6W46Eei K
PHAKt cdokMPj gi uQ',

"kid": "00UaBe20j y9VkwZUQPZWNNoKFPJA4Chc" }

Back to Validating the Transient Token (on page 34).

Example: Validating the Transient Token

This example shows how to extract the signature key from the capture context and use the key to
validate the transient token object returned from a successful microform interaction.

consol e. | og(' Response Transi ent Token: ' + req. body.transi ent Token);

consol e. |l og(' Response CaptureContext: ' +

req. body. capt ur eCont ext) ;

/1 Validating Token JWI' Agai nst Signature in Capture Context
var capturecontext = req.body. captureContext;
var transi ent Token = req. body. transi ent Token;

/1 Extracting JWK in Body of Capture Context
var ccBody = capturecontext.split('."')[1];
consol e. |l og(' Body: ' + ccBody);

var atob = require('atob');

var ccDecodedVal ue = JSON. parse(atob(ccBody));
var jwk = ccDecodedVal ue. fl x. j wk;

Digital Accept Secure Integration | Microform Integration v2 | 41

consol e. | og(' CaptureContext JWK: ' + JSON.stringify(jwk));

/1 Converting JWK to PEM
var jwkToPem = require('jwk-to-pem),
jw = require(']jsonwebtoken');

var pem = jwkToPen{(j wKk) ;

/1 Validating JWI

var validJWr = jwt.verify(transi ent Token, penj;

consol e. | og(' Val i dat ed Resposonse: ' + JSON.stringify(validJW));

Back to Validating the Transient Token (on page 34).

Example: Authorization with a Transient Token Using the REST API

"clientReferenceInformation”: {
"code": "TC50171_3"
¥
"orderInformation": {
"amountDetails": {
"totalAmount": "102.21",

"currency": "USD"

}s

"billTo": {
"firstName": "Tanya",
"lastName": "Lee",
"address1": "1234 Main St.",
"locality"”: "Small Town",
"administrativeArea": "MI",
"postalCode": "98765-4321",
"country": "US",
"district": "MI",
"buildingNumber": "123",
"email"”: "tanyalee@example.com",
"phoneNumber": "987-654-3210"

}

}s

"tokenInformation": {

"transientTokenJwt": "eyJraWQiOiIwN@JIwSE9abkhIM3c3UVAycmhNZKhuWE9XQlhwalZHTiIsImFsZyI6I1l
JTMjU2In@.eyJkYXRhIjp7ImV4AcGlyYXRpb25ZZWFyIjoiMjAyMCIsIm51bWI1ciI6IjOQXMTEXMVhYWFhYWDEXMTE i
LCI1eHBpcmFOaWOUTWOudGgiOiIXxMCISInR5cGUiOiIWMDEifSwiaXNzIjoiRmx1eC8wNyIsImV4cCI6MTUSMTCON]
AyNCwidH1wZSI6ImImLTAUMTEUMCISIm1lhdCI6MTUSMTcONTEYNCwianRpIjoiMUMzWjdUTkpaVjI40VM5MTdQMOIH
SFM1TOZQNFNBRERCUUtKMFFKMzMzOEhRROMWWTEOQjVFRTAXREUANEZDQiJ9. cfwzUMIf115K2T9-wE_A_k2jZptX1
ov1s8-fKYOmuO8YzGatE5fu9r6aC4q7n0YOVEU6G7XdHAASG32mWnYu-kK1gN4IY_cquRJeUvV89ZPZ5WTttyrgVH1

Digital Accept Secure Integration | Microform Integration v2 | 42

7LSTE2EvwMawkKNYnjhelJwqYJ51cLnJiV1yqTdEAv3DI3vInXP1YeQjLX5_ VvF-OWEuZfIxahHfUdsjeGhGaaOGVMUZ
JISkzpTu9zDLTvpblpx3WGGPU8FcHoxrcCGGpcKk456AZgYMBSHNr-pPkRr3Dnd7XgNF6shfzIPbcXeWDYPTpS4PNY
8ZsWKx8NnNFQIeROMWCSXIZOmu3Wt71KN9iK6eDfOPro7w"

}

Back to Using the Transient Token (on page 35).

Styling

Microform Integration can be styled to look and behave like any other input field on your site.

General Appearance

The <iframe> element rendered by Microform has an entirely transparent background that
completely fills the container you specify. By styling your container to look like your input fields, your
customer will be unable to detect any visual difference. You control the appearance using your own
stylesheets. With stylesheets, there are no restrictions and you can often re-use existing rules.

Explicitly Setting Container Height

Typically, input elements calculate their height from font size and line height (and a few other
properties), but Microform Integration requires explicit configuration of height. Make sure you style
the height of your containers in your stylesheets.

Managed Classes

In addition to your own container styles, Microform Integration automatically applies some classes
to the container in response to internal state changes.
Class Description

.flex-microform Base class added to any element in which a field has
been loaded.

.flex-microform-disabled The field has been disabled.
.flex-microform-focused The field has user focus.
.flex-microform-valid The input card number is valid.
.flex-microform-invalid The input card number invalid.

Digital Accept Secure Integration | Microform Integration v2 | 43

Class Description

.flex-microform-autocomplete The field has been filled using
an autocomplete/autofill event.

To make use of these classes, include overrides in your application’s stylesheets. You can combine
these styles using regular CSS rules. Here is an example of applying CSS transitions in response to
input state changes:

.flex-mcrof orm {
hei ght: 20px;
background: #ffffff;
-webkit-transition: background 200ns;
transition: background 200ns;

/* different styling for a specifc container */
#securi t yCode-cont ai ner. fl ex-mi crof orm {
background: purple;

.flex-mcroformfocused {
background: Iightyell ow

.flex-mcroformvalid {
background: green;

.flex-mcroformvalid.flex-mncroformfocused {
background: [i ghtgreen;

.fl ex-m crof orm aut oconpl ete {
background: #faffbd;

Input Field Text

To style the text within the iframe element, use the JavaScript library. The styles property in the
setup options accepts a CSS-like object that allows customization of the text. Only a subset of the CSS
properties is supported.

var custontStyles = {

"input': {
'font-size': '16px',

Digital Accept Secure Integration | Microform Integration v2 | 44

"color': '#3A3A3A

(¥

'::placehol der': {
"color': 'blue

(¥

":focus': {
"color': 'blue

(¥

" hover': {
"font-style': "italic'

(¥

":disabled : {
"cursor': 'not-allowed,

(¥

‘valid : {
‘color': 'green'

(¥

"invalid : {
‘color': 'red'

}

I 5
var flex = new Flex('.......... ");

/1 apply styles to all fields

var microform= flex.mcroforn({ styles: custonttyles });
var securityCode = mcroformcreateField(' securityCode');
/1 override the text color for for the card nunber field

var nunber = microformcreateField(' nunmber', { styles: { input: { color
'#000" }}});

Supported Properties

The following CSS properties are supported in the styles: { ... } configuration hash. Unsupported
properties are not added to the inner field, and a warning is output to the console.

* color

* cursor

e font

* font-family
* font-kerning

e font-size

Digital Accept Secure Integration | Microform Integration v2 | 45

* font-size-adjust

* font-stretch

* font-style

* font-variant

* font-variant-alternates

* font-variant-caps

* font-variant-east-asian

* font-variant-ligatures

* font-variant-numeric

* font-weight

* line-height

* opacity

* text-shadow

* text-rendering

* transition

* -moz-osx-font-smoothing

* -moz-tap-highlight-color

* -moz-transition

* -o-transition

* -webkit-font-smoothing

* -webkit-tap-highlight-color

* -webkit-transition

Digital Accept Secure Integration | Microform Integration v2 | 46

Events

You can subscribe to Microform Integration events and obtain them through event listeners. Using
these events, you can easily enable your checkout user interface to respond to any state changes as
soon as they happen.

Events
Event Name Emitted When
autocomplete
Customer fills the credit card number using a browser or third-party
extension. This event provides a hook onto the additional information
provided during the autocomplete event.
blur
Field loses focus.
change
Field contents are edited by the customer. This event contains various
data such as validation information and details of any detected card types.
focus
Field gains focus.
inputSubmitRequest
Customer requests submission of the field by pressing the Return key or
similar.
load
Field has been loaded on the page and is ready for user input.
unload
Field is removed from the page and no longer available for user input.
update

Field configuration was updated with new options.

Some events may return data to the event listener’s callback as described in the next section.

Subscribing to Events

Using the .on() method provided in the microformInstance object, you can easily subscribe to any of
the supported events.

For example, you could listen for the change event and in turn display appropriate card art and
display brand-specific information.

Digital Accept Secure Integration | Microform Integration v2 | 47

var secCodelLbl = docunent. querySel ector (' #nySecurityCodelLabel');
var nunberField = flex.createField('nunber');

/1 Update your security code |abel to match the detected card type's terninol ogy
nunber Fi el d. on(' change', function(data) {
secCodelLbl . text Content = (data.card && data.card.length > 0) ?
dat a. card[0] . securi tyCode. nane : 'CVN ;

1),

nunber Fi el d. | oad("' #myNunber Cont ai ner') ;

The data object supplied to the event listener’s callback includes any information specific to the
triggered event.

Card Detection

By default, Microform attempts to detect the card type as it is entered. Detection info is bubbled
outwards in the change event. You can use this information to build a dynamic user experience,
providing feedback to the user as they type their card number.

{
"card": |
{
"nane": "nmastercard",
"brandedNane": "MasterCard",
"cybsCardType": "002",
"spaces": [4, 8, 12],
"l engths": [16],
"securityCode": {
"name": "CVC',
"l ength": 3
I
"l uhn": true,
"valid": fal se
"coul dBeVal i d": true
I
/* other identified card types */
]
}

If Microform Integration is unable to determine a single card type, you can use this information to
prompt the customer to choose from a possible range of values.

If type is specified in the microformInstance.createToken(options,...) method, the specified value
always takes precedence over the detected value.

Digital Accept Secure Integration | Microform Integration v2 | 48

Autocomplete

By default, Microform Integration supports the autocomplete event of the cardnumber field
provided by certain browsers and third-party extensions. An autocomplete event is provided to allow
easy access to the data that was provided to allow integration with other elements in your checkout
process.

The format of the data provided in the event might be as follows:

{

name: ' ',
expi rati onMonth: ' ",
expirationYear: '

}

These properties are in the object only if they contain a value; otherwise, they are undefined. Check
for the properties before using the event. The following example displays how to use this event to
update other fields in your checkout process:

var nunber = mcroformcreateField(' nunber');
nunber. on(' aut oconpl ete', function(data) {
i f (data.nane) docunent.querySel ector (' #myNane'). val ue = dat a. nane;
i f (data.expirati onMonth) docunent. querySel ector (' #nmyMonth').val ue =
dat a. expi rati onMont h;
i f (data.expirationYear) docunent.querySel ector('#myYear').value =
dat a. expi rati onYear;

1),

Security Recommendations

By implementing a Content Security Policy, you can make use of browser features to mitigate many
cross-site scripting attacks.

The full set of directives required for Microform Integration is:

Security Policy Locations

Policy Sandbox Production

frame-src https://testflex.cybersource.com/ https://flex.cybersource.com/
child-src https://testflex.cybersource.com/ https://flex.cybersource.com/
script-src https:/ /testflex.cybersource.com/ https://flex.cybersource.com/

Digital Accept Secure Integration | Microform Integration v2 | 49

https://developer.mozilla.org/en-US/docs/Web/HTTP/CSP
https://www.owasp.org/index.php/Cross-site_Scripting_(XSS)

PCI DSS Guidance

Any merchant accepting payments must comply with the PCI Data Security Standards (PCI DSS).
Microform Integration’s approach facilitates PCI DSS compliance through self-assessment and the
storage of sensitive PCI information.

Self Assessment Questionnaire

Microform Integration handles the card number input and transmission from within iframe elements
served from Cybersource controlled domains. This approach can qualify merchants for SAQ A-based
assessments. Related fields, such as card holder name or expiration date, are not considered sensitive
when not accompanied by the PAN.

Storing Returned Data

Responses from Microform Integration are stripped of sensitive PCI information such as card
number. Fields included in the response, such as card type and masked card number, are not subject

to PCI compliance and can be safely stored within your systems. If you collect the CVN, note that it
can be used for the initial authorization but not stored for subsequent authorizations.

API Reference

This reference provides details about the JavaScript API for creating Microform Integration web
pages.

Class: Field

An instance of this class is returned when you add a Field to a Microform integration using
microform.createField (on page 60). With this object, you can then interact with the Field to
subscribe to events, programmatically set properties in the Field, and load it to the DOM.

Methods

clear()
Programmatically clear any entered value within the field.

Example

Digital Accept Secure Integration | Microform Integration v2 | 50

https://www.pcisecuritystandards.org/documents/SAQ_A_v3.pdf

field.clear();

dispose()
Permanently remove this field from your Microform integration.

Example

field. dispose();

focus()
Programmatically set user focus to the Microform input field.

Example

field. focus();

load(container)
Load this field into a container element on your page.

Successful loading of this field will trigger a load event.

Parameters
Name Type Description
container HTMLElement | string Location in which to load this field. It can be either an
HTMLElement reference or a CSS selector string that
will be used to load the element.
Examples

Using a CSS selector

field.load('.formcontrol.card-nunber');

Using an HTML element

var contai ner = docunent. get El ement Byl d(' cont ai ner');
field.load(container);

Digital Accept Secure Integration | Microform Integration v2 | 51

off(type, listener)

Unsubscribe an event handler from a Microform Field.

Parameter
Name Type Description
type string Name of the event you wish to unsubscribe from.
listener function The handler you wish to be unsubscribed.
Example

/1 subscribe to an event using .on() but keep a reference to the handler that was
suppl i ed.

var focusHandl er = function() { console.log(' focus received); }

field.on('focus', focusHandl er);

/! then at a |ater point you can renove this subscription by supplying the sane
argunents to .off()
field.off('focus', focusHandler);

on(type, listener)
Subscribe to events emitted by a Microform Field. Supported eventTypes are:

* autocomplete

* blur

* change

* error

« focus

* inputSubmitRequest
* load

* unload

* update

Some events may return data as the first parameter to the callback otherwise this will be undefined.
For further details see each event's documentation using the links above.

Digital Accept Secure Integration | Microform Integration v2 | 52

Parameters

Name Type Description

type string Name of the event you wish to subscribe to.

listener function Handler to execute when event is triggered.
Example

field.on('focus', function() {
consol e.l og(' focus received'); });
unload()
Remove a the Field from the DOM. This is the opposite of a load operation.

Example

field.unload();

update(options)

Update the field with new configuration options. This accepts the same parameters as
microform.createField(). New options will be merged into the existing configuration of the field.

Parameter

Name Type Description

options object New options to be merged with previous configuration.
Example

/1 field initially |oaded as disabled with no pl acehol der
var nunber = m croformcreateField(' nunber', { disabled: true });
nunber. | oad(' #contai ner');

/1 enable the field and set placehol der text
nunber . updat e({ di sabl ed: fal se, placeholder: 'Please enter your card nunber' });

Events

autocomplete

Digital Accept Secure Integration | Microform Integration v2 | 53

Emitted when a customer has used a browser or third-party tool to perform an autocomplete/
autofill on the input field. Microform will attempt to capture additional information from the
autocompletion and supply these to the callback if available. Possible additional values returned are:

* name
* expirationMonth

* expirationYear

If a value has not been supplied in the autocompletion, it will be undefined in the callback data. As
such you should check for its existence before use.

Examples

Possible format of data supplied to callback

nane: ' D
expirationMonth: ' _ ',
expirationYear: '

Updating the rest of your checkout after an autocomplete event

field.on('autoconplete', function(data) {

i f (data.nane) docunent.querySel ector (' #myNane'). val ue = dat a. nane;

i f (data.expirati onMonth) docunent. querySel ector (' #nmyMonth').val ue =
dat a. expi rati onMont h;

i f (data.expirationYear) docunent.querySel ector('#myYear').value =
dat a. expi rati onYear;

1)
blur
This event is emitted when the input field has lost focus.

Example

field.on('blur', function() {
consol e.log(' Field has | ost focus');

1)

/1 focus the field in the browser then un-focus the field to see your supplied
handl er execute

Digital Accept Secure Integration | Microform Integration v2 | 54

change

Emitted when some state has changed within the input field. The payload for this event contains
several properties.

Type: object

Properties
Name Type
card object
valid boolean
couldBeValid boolean
empty boolean
Examples

Minimal example:

field.on('change', function(data) {
consol e. | og(' Change event!');
consol e. | og(dat a) ;

1)

Use the card detection result to update your UL

var cardl mage = documnent. querySel ector('ing. cardD splay');
var cardSecurityCodelLabel = docunent.querySel ector ('l abel[for=securityCode]"');

/1 create an object to map card nanes to the URL of your custom i mages
var cardl mages = {

visa: '/your-imges/visa.png',

mast ercard: '/your-inmages/ mastercard. png',

amex: '/your-inmages/anmex. png',

maestro: '/your-inmges/ naestro. png’

di scover: '/your-inmages/di scover. png'

di nersclub: '/your-imges/dinerscl ub. png'
jcb: '/your-inmages/jcb. png'

1

field.on('change', function(data) {
if (data.card.length === 1) {
/1 use the card nane to to set the correct inmage src
cardl mage. src = cardl mages[dat a. card[0] . nane] ;

Digital Accept Secure Integration | Microform Integration v2 | 55

/1 update the security code |abel to match the detected card's nam ng
convention
cardSecurityCodeLabel . t ext Content = data.card[O]. securityCode. nane;

} else {

/1 show a generic card inmage

cardl mage. src = '/your-imges/generic-card.png';
}

1)

Use the card detection result to filter select element in another part of your checkout.

var cardTypeOpti ons = docunent. querySel ector (' sel ect[nane=cardType] option');

field.on('change', function(data) {
/1 extract the identified card types
var detectedCardTypes = data.card. map(function(c) { return c.cybsCardType; });

/1 disable any select options not in the detected card types |i st

cardTypeOpti ons. f or Each(function (0) {
0. di sabl ed = det ect edCar dTypes. i ncl udes(o. val ue);

1)
1)

Updating validation styles on your form element.

var myForm = docunent . querySel ector (' form);
field.on('change', function(data) {

myFor m cl assLi st.toggl e(' cardlsValidStyle', data.valid);
myFor m cl assLi st. toggl e(' cardCoul dBeVal i dStyl e', data. coul dBeVal i d);

1)
focus
Emitted when the input field has received focus.

Example

field.on('focus', function() {
consol e.log(' Field has received focus');

1)

[/l focus the field in the browser to see your supplied handl er execute

Digital Accept Secure Integration | Microform Integration v2 | 56

inputSubmitRequest

Emitted when a customer has requested submission of the input by pressing Return key or similar.
By subscribing to this event you can easily replicate the familiar user experience of pressing enter
to submit a form. Shown below is an example of how to implement this. The inputSubmitRequest
handler will:

1. Call Microform.createToken() (on page 60).
2. Take the result and add it to a hidden input on your checkout.

3. Trigger submission of the form containing the newly created token for you to use server-side.
Example

var form = docunent. querySel ector (' form);
var hi ddenl nput = documnent. querySel ector (' form i nput[nane=t oken]');

field.on("inputSubmtRequest', function() {

var options = {
/1

nm cr of orm cr eat eToken(opti ons, function(response) ({
hi ddenl nput . val ue = response. t oken;
formsubmt();

1)
1)

load
This event is emitted when the field has been fully loaded and is ready for user input.

Example

field.on('load , function() {
console.log('Field is ready for user input');

1)

unload
This event is emitted when the field has been unloaded and no longer available for user input.

Example

Digital Accept Secure Integration | Microform Integration v2 | 57

field.on('unload , function() {
consol e.l og(' Field has been renoved fromthe DOM);

1)
update

This event is emitted when the field has been updated. The event data will contain the settings that
were successfully applied during this update.

Type: object
Example

field.on('update', function(data) {
consol e.log(' Field has been updated. Changes applied were:');
consol e. | og(data);

1)

Module: FLEX

Flex(captureContext)
new Flex(captureContext)

For detailed setup instructions, see Getting Started (on page 28).

Parameters:
Name Type Description
captureContext String JWT string that you requested via a server-side
authenticated call before starting the checkout flow.
Example
Basic Setup
scri pt

src="https://
fl ex. cybersource. coni cybersource/ assets/ mcrofornf0.11/fl ex-mcroformmn.js"></sc
ript>
<scri pt>
var flex = new Fl ex(' header. payl oad. si gnature');
</script>

Digital Accept Secure Integration | Microform Integration v2 | 58

Methods

microform(optionsopt) > {Microform}

This method is the main setup function used to initialize Microform Integration. Upon successful
setup, the callback receives a microform, which is used to interact with the service and build your
integration. For details, see Class: Microform (on page 60).

Parameter
Name Type Description
options Object
Property
Name Type Attributes Description
styles Object <optional> Apply custom styling to all the fields in your
integration.
Returns:

Type: Microform
Examples

Minimal Setup

var flex = new Fl ex(' header. payl oad. si gnature');
var mcroform= flex.mcroforn();

Custom Styling

var flex = new Fl ex(' header. payl oad. si gnature');
var mcroform= flex.n croforn({

styles: {
i nput: {
col or: '#212529',
"font-size': '20px’
}
}

1)

Digital Accept Secure Integration | Microform Integration v2 | 59

Class: Microform

An instance of this class is returned when you create a Microform integration using flex.microform.
This object allows the creation of Microform Fields. For details, see Module: Flex (on page 58).

Methods

createField(fieldType, optionsopt) > {Field}

Create a field for this Microform integration.

Parameters

Name

fieldType

options

Properties

Name

placeholder

title

description

disabled

autoformat

Type

string

object

Type

string

string

string

Attributes

<optional>

Boolean

Boolean

Description

Supported values:

* number

* securityCode

To change these options after initialization
use field.update().

Attributes

<optional>

<optional>

<optional>

<optional>

<optional>

Default

false

true

Digital Accept Secure Integration | Microform Integration v2 | 60

Description

Sets the placeholder attribute on
the input.

Sets the title attribute on the input.
Typically used to display tooltip
text on hover.

Sets the input's description for use
by assistive technologies using
the aria-describedby attribute.

Sets the disabled attribute on the
input.

Enable or disable automatic
formatting of the input field. This
is only supported for number
fields and will automatically insert
spaces based on the detected card

type.

https://developer.mozilla.org/en-US/docs/Web/HTML/Global_attributes/title
https://developer.mozilla.org/en-US/docs/Web/Accessibility/ARIA/Attributes/aria-describedby

Name Type Attributes Default ' Description

maxLength number <optional> 3 Sets the maximum length attribute
on the input. This is only supported
for securitycCode fields and may
take a value of 3 or 4.

styles stylingOptions | <optional> Apply custom styling to this field

Returns
Type: Field
Examples

Minimal Setup

var flex = new Flex('......... ");
var microform= flex.mcroforn();
var nunmber = m crof orm createFiel d(' nunber');

Providing Custom Styles

var flex = new Flex('......... ")
var mcroform= flex.mcroforn();
var nunber = m crof orm createFiel d(' nunmber', ({
styles: {
i nput: {
"font-famly': "'"Courier New', npnospace'

}
1)

Setting the length of a security code field

var flex = new Flex('......... ")
var mcroform= flex.mcroform));
var securityCode = mcroformcreateField('securityCode', { maxLength: 4 });

createToken(options, callback)

Request a token using the card data captured in the Microform fields. A successful token creation will
receive a transient token as its second callback parameter.

Parameter

Digital Accept Secure Integration | Microform Integration v2 | 61

Name Type Description
options object Additional tokenization options.

callback callback Any error will be returned as the first callback parameter. Any
successful creation of a token will be returned as a string in the
second parameter.

Properties
Name Type Attributes Description
type string <optional> Three digit card type string.
If set, this will override any
automatic card detection.
expirationMonth string <optional> Two digit month string. Must
be padded with leading zeros if
single digit.
expirationYear string <optional> Four digit year string.
Examples

Minimal example omitting all optional parameters.

m crof orm creat eToken({}, function(err, token) {
if (err) {
consol e.error(err);
return;

consol e. |l og(' Token successfully created!");
consol e. | og(token);

1)

Override the cardType parameter using a select element that is part of your checkout.

/1 Assumes your checkout has a select element with option val ues that
are Cybersource card type codes:

/1 <select id="cardTypeQverride">

/1 <option val ue="001">Vi sa</ opti on>

/1 <opti on val ue="002">Mast er car d</ opti on>

/1 <option val ue="003">Aneri can Express</option>

/1 etc...

/1 <lselect>

var options = {
type: docunent. querySel ector (' #cardTypeQverride'). val ue

Digital Accept Secure Integration | Microform Integration v2 | 62

)i
m cr of orm cr eat eToken(opti ons, function(err, token) ({
/1 handl e errors & token response

1)

Handling error scenarios

nm cr of orm cr eat eToken(opti ons, function(err, token) ({
if (err) {
switch (err.reason) ({
case ' CREATE_TOKEN _NO Fl ELDS_LOADED :

br eak;

case ' CREATE_TOKEN_TI MEOUT' :
br eak;

case ' CREATE_TOKEN _NO FI ELDS' :
br eak;

case ' CREATE_TOKEN VALI DATI ON_PARANS' :
br eak;

case ' CREATE_TOKEN VALI DATI ON_FI ELDS' :
br eak;

case ' CREATE_TOKEN VALI DATI ON_SERVERSI DE' :
br eak;

case ' CREATE_TOKEN UNABLE TO START':
br eak;

defaul t:
consol e. error (' Unknown error');
br eak;

} else {
consol e. |l og(' Token created: ', token);

}
1)

Class: MicroformError

This class defines how error scenarios are presented by Microform, primarily as the first argument to
callbacks. See callback(erropt, nullable, dataopt, nullable) > {void} (on page 69).

Members
(static, readonly)Reason Codes - Field Load Errors
Possible errors that can occur during the loading or unloading of a field.

Properties

Digital Accept Secure Integration | Microform Integration v2 | 63

Name Type Description

FIELD UNLOAD _ERROR string Occurs when you attempt to unload a
field that is not currently loaded.

FIELD ALREADY LOADED string Occurs when you attempt to load a field
which is already loaded.

FIELD LOAD_CONTAINER_SELECTOR string Occurs when a DOM element cannot be
located using the supplied CSS Selector
string.

FIELD_LOAD_INVALID_CONTAINER string Occurs when an invalid container

parameter has been supplied.

FIELD_SUBSCRIBE_UNSUPPORTED_EVENT string Occurs when you attempt to subscribe
to an unsupported event type.

FIELD_SUBSCRIBE_INVALID_CALLBACK string Occurs when you supply a callback that
is not a function.

(static, readonly)Reason Codes - Field object Creation

Possible errors that can occur during the creation of a Field object createField(fieldType, optionsopt)
> {Field} (on page 60).

Properties
Name Type Description
CREATE_FIELD_INVALID_FIELD_TYPE string Occurs when you try to create a field
with an unsupported type.
CREATE_FIELD_DUPLICATE string Occurs when a field of the given type has

already been added to your integration.

(static, readonly)Reason Codes - Flex object Creation

Possible errors that can occur during the creation of a Flex object.

Properties
Name Type Description
CAPTURE_CONTEXT_INVALID string Occurs when you pass an invalid JWT.
CAPTURE_CONTEXT_EXPIRED string Occurs when the JWT you pass has

expired.

(static, readonly)Reason Codes - Iframe validation errors
Possible errors that can occur during the loading of an iframe.

Digital Accept Secure Integration | Microform Integration v2 | 64

Properties

Name Type Description

IFRAME_JWT_VALIDATION_FAILED string Occurs when the iframe cannot validate
the JWT passed.

IFRAME UNSUPPORTED _FIELD TYPE string Occurs when the iframe is attempting to

load with an invalid field type.

(static, readonly)Reason Codes - Token creation

Possible errors that can occur during the request to create a token.

Properties

Name Type Description

CREATE_TOKEN _NO_FIELDS LOADED string Occurs when you try to request
a token, but no fields have been
loaded.

CREATE_TOKEN _TIMEOUT string Occurs when the createToken call
was unable to proceed.

CREATE_TOKEN _XHR_ERROR string Occurs when there is a network
error when attempting to create a
token.

CREATE_TOKEN_NO_FIELDS string Occurs when the data fields are
unavailable for collection.

CREATE_TOKEN_VALIDATION_PARAMS string Occurs when there's an issue with
parameters supplied to createToken.

CREATE_TOKEN_VALIDATION_FIELDS string Occurs when there's a validation
issue with data in your loaded
fields.

CREATE_TOKEN_VALIDATION_SERVERSIDE string Occurs when server-side validation
rejects the createToken request.

CREATE_TOKEN UNABLE TO_START string Occurs when no loaded

field was able to handle
the createToken request.

(nullable)correlationID :string

The correlationld of any underlying API call that resulted in this error.

Type

Digital Accept Secure Integration | Microform Integration v2 | 65

String

(nullable)details :array
Additional error specific information.

Type

Array

(nullable)informationLink :string
A URL link to general online documentation for this error.
Type

String

message :string
A simple human-readable description of the error that has occurred.
Type

String

reason :string
A reason corresponding to the specific error that has occurred.
Type

String

Events
You can subscribe to Microform Integration events and obtain them through event listeners. Using

these events, you can easily enable your checkout user interface to respond to any state changes as
soon as they happen.

Digital Accept Secure Integration | Microform Integration v2 | 66

Events
Event Name Emitted When

autocomplete
Customer fills the credit card number using a browser or third-party
extension. This event provides a hook onto the additional information
provided during the autocomplete event.

blur
Field loses focus.
change
Field contents are edited by the customer. This event contains various
data such as validation information and details of any detected card types.
focus
Field gains focus.
inputSubmitRequest
Customer requests submission of the field by pressing the Return key or
similar.
load
Field has been loaded on the page and is ready for user input.
unload
Field is removed from the page and no longer available for user input.
update

Field configuration was updated with new options.

Some events may return data to the event listener’s callback as described in the next section.

Subscribing to Events

Using the .on() method provided in the microformInstance object, you can easily subscribe to any of
the supported events.

For example, you could listen for the change event and in turn display appropriate card art and
display brand-specific information.

var secCodelLbl = docunent. querySel ector (' #nySecurityCodelLabel');
var nunberField = flex.createFiel d(' nunmber');

/1 Update your security code |abel to match the detected card type's ternm nol ogy
nunber Fi el d. on(' change', function(data) {

Digital Accept Secure Integration | Microform Integration v2 | 67

secCodelLbl . text Content = (data.card && data.card.length > 0) ?
dat a. card[0] . securi tyCode. nane : 'CVN ;

1)

nunber Fi el d. | oad(' #myNunber Cont ai ner') ;

The data object supplied to the event listener’s callback includes any information specific to the
triggered event.

Card Detection

By default, Microform attempts to detect the card type as it is entered. Detection info is bubbled
outwards in the change event. You can use this information to build a dynamic user experience,
providing feedback to the user as they type their card number.

{
"card": |
{
"name": "nmastercard",
"brandedNane": "MasterCard",
"cybsCardType": "002",
"spaces": [4, 8, 12],
"l engths": [16],
"securityCode": {
"nane": "CVC',
"l ength": 3
s
"l uhn": true,
"valid": fal se
"coul dBeVal i d": true
s
/* other identified card types */
]
}

If Microform Integration is unable to determine a single card type, you can use this information to
prompt the customer to choose from a possible range of values.

If type is specified in the microformInstance.createToken(options, ...) method, the specified value
always takes precedence over the detected value.

Digital Accept Secure Integration | Microform Integration v2 | 68

Autocomplete

By default, Microform Integration supports the autocomplete event of the cardnumber field
provided by certain browsers and third-party extensions. An autocomplete event is provided to allow
easy access to the data that was provided to allow integration with other elements in your checkout
process.

The format of the data provided in the event might be as follows:

{

name: ' ',
expi rati onMonth: ' ",
expirationYear: '

}

These properties are in the object only if they contain a value; otherwise, they are undefined. Check
for the properties before using the event. The following example displays how to use this event to
update other fields in your checkout process:

var nunber = mcroformcreateField(' nunber');
nunber. on(' aut oconpl ete', function(data) {
i f (data.nane) docunent.querySel ector (' #myNane'). val ue = dat a. nane;
i f (data.expirati onMonth) docunent. querySel ector (' #nmyMonth').val ue =
dat a. expi rati onMont h;
i f (data.expirationYear) docunent.querySel ector('#myYear').value =
dat a. expi rati onYear;

1),

Global

Type Definitions
callback(erropt, nullable, dataopt, nullable) > {void}
Microform uses the error-first callback pattern, as commonly used in Node.js.

If an error occurs, it is returned by the first err argument of the callback. If no error occurs, err has a
null value and any return data is provided in the second argument.

Parameters

Digital Accept Secure Integration | Microform Integration v2 | 69

https://nodejs.org/api/errors.html#errors_error_first_callbacks

Name Type
err MicroformError.
See Class:
MicroformError (on
page 63).
data *
Returns
Type: void
Example

Attributes Description

<optional> <nullable> | An Object detailing occurred errors,
otherwise null.

<optional> <nullable> | In success scenarios, this is
whatever data has been returned
by the asynchronous function call, if
any.

The following example shows how to make use of this style of error handling in your code:

foo(function (err, data) ({

/1 check for and handle any errors

if (err) throw err;

/] otherw se use the data returned

consol e. | og(dat a) ;

1)

StylingOptions

Styling options are supplied as an object that resembles CSS but is limited to a subset of CSS
properties that relate only to the text within the iframe.

Supported CSS selectors:
* input
» ::placeholder
* :hover
» :focus
» :disabled
* valid

* invalid

Digital Accept Secure Integration | Microform Integration v2 | 70

Supported CSS properties:
* color
* cursor
* font
* font-family
* font-kerning
* font-size
* font-size-adjust
* font-stretch
* font-style
* font-variant
* font-variant-alternates
* font-variant-caps
* font-variant-east-asian
* font-variant-ligatures
* font-variant-numeric
* font-weight
* line-height
* opacity
* text-shadow
* text-rendering
* transition
* -moz-osx-font-smoothing

* -moz-tap-highlight-color

Digital Accept Secure Integration | Microform Integration v2 | 71

* -moz-transition

* -o-transition

* -webkit-font-smoothing

* -webkit-tap-highlight-color
* -webkit-transition

Any unsupported properties will not be applied and raise a console.warn().

Properties

Name Type Attributes Description

input object | <optional> Main styling applied to the input field.

:;placeholder |object | <optional> Styles for the ::placeholder pseudo-element within the
main input field. This also adds vendor prefixes for
supported browsers.

:hover object | <optional> Styles to apply when the input field is hovered over.

:focus object | <optional> Styles to apply when the input field has focus.

:disabled object | <optional> Styles applied when the input field has been disabled.

valid object | <optional> Styles applied when Microform detects that the input
card number is valid. Relies on card detection being
enabled.

invalid object | <optional> Styles applied when Microform detects that the input
card number is invalid. Relies on card detection being
enabled.

Example

const styles = {

"input': {
‘color': '#464646',
'font-size': '16px’
"font-famly': 'nonospace’
}H
" hover': {
"font-style': "italic'
}H

"invalid : {

Digital Accept Secure Integration | Microform Integration v2 | 72

"col or':

"red'

Digital Accept Secure Integration | Microform Integration v2 | 73

Unified Checkout

Unified Checkout provides a single interface with which you can accept numerous types of digital
payments.

Unified Checkout consists of a server-side component and a client-side JavaScript library.

The server-side component authenticates your merchant identity and instructs the system to act
within your payment environment. The response contains limited-use public keys. The keys are
for end-to-end encryption and contain merchant-specific payment information that drives the
interaction of the application. The client-side JavaScript library dynamically and securely places
digital payment options onto your e-commerce page.

The provided JavaScript library enables you to securely accept many payment options within
your e-commerce environment. Unified Checkout can be embedded seamlessly into your existing
webpage, simplifying payment acceptance.

When a customer chooses a payment method from the button widget, Unified Checkout handles all
of the interactions with the digital payment that was chosen. It also provides a response to your e-
commerce system.

The figure below shows Unified Checkout with customer checkout payment options.

Button Widget

€ secure checkout X

©

:41 il T -

@ yourwebsite.com .
Q Contact Details Edit @ yourwebsite.com
john.doe@visa.com
Order Summary 1234567890

Subtotal (2 items) $116.00

Your checkout
page’s UX

Shipping $0.00

Estimated tax (98074) $10.00

@& Payment Details (|18
VISA **++9342, Exp 06/29 Edit

227 Park Avenue #218
New York, NY 10172

Thanks!

#3892374829. A
with options

Your checkout page’s UX

Payment Summary
Q Shipping details Edit
Joe Soap
123 Cool St #12
Beverly Hills, CA 90210

Order Total

Buy with G Pay o Review & Confirm

Please review and confirm your payment
information before you continue.

Unified Checkout ——

Pay with bank account [y | Savemyinfo above for faster
checkout with Click to Pay

EB[0C» checkout with card

s for
will be
/acy Notice.

@ Click to Pay has found your linked cards (2) ding to the

Complete Purchase

v @0 EEED @ I =

Unified Checkout’s payment method list Unified Checkout’s card entry overlay Illustrative payment confirmation page

For examples of different payment method Uls through Unified Checkout, see Unified Checkout Ul
(on page 106).

Digital Accept Secure Integration | Unified Checkout | 74

Unified Checkout Flow

To integrate Unified Checkout into your platform, you must follow several integration steps. This
section gives a high-level overview of how to integrate and launch Unified Checkout on your webpage
and process a transaction using the data that Unified Checkout collects for you. You can find the
detailed specifications of the APIs later in this document.

The integration flow consists of three events:

1. You send a server-to-server API request for a capture context. This request is fully
authenticated and returns a JSON Web Token (JWT) that is necessary in order to invoke the
frontend JavaScript library. For information on setting up the server side, see Server-Side Set
Up (on page 78).

2. You invoke the Unified Checkout JavaScript library using the JWT response from the capture
context request. For information on setting up the client side, see Client-Side Set Up (on page
81).

3. You process the payment.

If you want to retrieve the billing and shipping information captured by Unified Checkout, you can
use the payment details API.

The figure below shows the Unified Checkout payment flow.

Digital Accept Secure Integration | Unified Checkout | 75

Unified Checkout Payment Flow

Customer Merchant Merchant Order Accept.js UP Portal
Website Management System
4 1\
Customer Get
— enters —— authentication —
website capture context
—— Generate capture context (parameters)—> Merchant
«———— Response (capture context) ————— generated
&—Capture context— capture
context
(. J
4 1\
Load
CYBSaccept.js
Initiate ACCEPT.js (capture context) —>
é——————Response (accept object) @
. " . Initiate unified
——Initate accept.unifiedpayments (options)—> payments
&——Response (unified payments object) JavaScript SDK
unifiedpayments.show (options) ——
Customer Unified
___ selects payments
payment is shown
type &——Response (transient token)——————
(. J
Get data
TTID Optional
(TTiD) Get data (TTID) ———————> (©p -)
o Pull billing
Response — Responsea(sglsr;‘);:ﬁﬁfnn;f,)contact. and shipping
_(shipping, name, __ pay Y information
contact, payment
summary)
Display payment
:I selection summary
Cf;l:atﬁ;\;c:r = Authorize transaction (TTID) —— @
Authorize
order - _—
transaction Authorize Process
(TTID) transaction | Payment
—— Response —— Response (authorization response) ——

For more information on the specific APIs referenced, see these topics:

* Capture Context API (on page 89)

» Payment Details API (on page 97)

Digital Accept Secure Integration | Unified Checkout | 76

Enabling Unified Checkout in the Business Center

To begin using Unified Checkout, you must first ensure that your merchant ID (MID) is configured to
use the service and that any payment methods you intend to use are properly set up.

1. Log in to the Business Center:
Test URL: https://businesscentertest.cybersource.com/ebc2
Production URL: https://businesscenter.cybersource.com
If you are unable to access this page, contact your sales representative.

2. In the Business Center, go to the left navigation panel and choose Payment Configuration >
Unified Checkout.

3. You can configure various payment methods such as Google Pay and Click to Pay. Click Set up
and follow the instructions for your selected payment methods. When payment methods are
enabled, they appear on the payment configuration page.

Payment Configuration

Unified Checkout

Digital Payment Solutions ENABLED

You have set up and enabled one or more digital payment solutions. You can
manage your payment solution enablement here. Set up additional services or
modify existing payment solutions configuration. These payment solutions are
available through the integrated Unified Checkout product. Easily enable digital
payment options for acceptance within your webpage.

>» GPay

Manage

4. Click Manage to edit your existing payment method configurations or enroll in new payment
methods as they are released.

Digital Accept Secure Integration | Unified Checkout | 77

https://businesscentertest.cybersource.com/ebc2
https://businesscenter.cybersource.com

Server-Side Set Up

This section contains the information you need to set up your server. Initializing Unified Checkout
within your webpage begins with a server-to-server call to the sessions API. This step authenticates
your merchant credentials, and establishes how the Unified Checkout frontend components will
function. The sessions API request contains parameters that define how Unified Checkout performs.

The server-side component provides this information:

« A transaction-specific public key is used by the customer's browser to protect the transaction.

 An authenticated context description package that manages the payment experience on the
client side. It includes available payment options such as card networks, payment interface
styling, and payment methods.

The functions are compiled in a JSON Web Token (JWT) object referred to as the capture context. For
information JSON Web Tokens, see JSON Web Tokens (on page 123).

Capture Context
The capture context request is a signed JSON Web Token (JWT) that includes all of the merchant-
specific parameters. This request tells the frontend JavaScript library how to behave within your

payment experience. For information on JSON Web Tokens, see JSON Web Tokens (on page 123).

You can define the payment cards and digital payments that you want to accept in the capture
context. Use the allowedCardNetworks field to define the card types.

Available card networks for card entry:

* American Express
* Diners Club

* Discover

*JCB

* Mastercard

 Visa

! Important: Click to Pay supports American Express, Mastercard, and Visa for saved cards.
Use the allowedPaymentTypes field to define the digital payment methods.

Digital Accept Secure Integration | Unified Checkout | 78

Example:

{

"targetOrigins” : ["https://www.test.com"],
"clientVersion" : "@.19",
"allowedCardNetworks™ : ["VISA"™, "MASTERCARD", "AMEX"],
"allowedPaymentTypes™ : ["PANENTRY", "CLICKTOPAY", "GOOGLEPAY"],
"country" : "US",
"locale" : "en_US",
"captureMandate" : {

"billingType" : "FULL",

"requestEmail" : true,

"requestPhone" : true,

"requestShipping" : true,

"shipToCountries" : ["US", "GB"],

"showAcceptedNetworkIcons" : true
s
"orderInformation" : {

"amountDetails" : {

"totalAmount" : "1.01",
"currency" : "USD"

¥

}
}

This diagram shows how elements of the capture context request appear in the card entry form.

Digital Accept Secure Integration | Unified Checkout | 79

{

“targetOrigins” : ["https://the-up-demo.appspot.com"],
“clientVersion” : "019",
“allowedCardNetworks"
"allowedPaymentTypes” :
“country” : "US",
"locale” : "en_US",
“captureMandate” : {
“billingType" : "FULL",

"CLICKTOPAY"],

“requestShipping” : true,
"shipToCountries” : ["US", "GB"],
"showAcceptedNetworkicons” : true

L
“orderinformation” : {
"amountDetails" : {
“totalAmount" : "1.07",
“currency" : "USD"
)

"billTo" : {

“address1" : "277 Park Avenue’,
“administrativeArea” : "NY",
“buildingNumber" : "#218",
“country" : "US",

“district" : "district’,

“locality" : “New York",
“postalCode" : "10172",
“email" : “john.doe@visa.com’,
“firstName'

“lastName" :

“phoneNumber” : "1234567890",
“phoneType" : "phoneType"

“shipTo" : {
“address1" : *123 Cool St',
“administrativeArea” : "CA",
“buildingNumber" : *#12",

“postalCode" : "90210",
“firstName" : "Joe",
“lastName" : "Soap"

VISA", "MASTERCARD", "AMEX"],

Anatomy of a Manual Card Entry Form

) secure checkout

@ contact Details

Email address

l john.doe@visa.com

Phone number

i 1234567890

E») Click to Pay will use this information to
checkif you have saved cards. A one-time
passcode may be sent to confirmit's you.
Message and data rates may apply. What is
Clickto Pay?

Continue

@ Payment Details
® shipping Details

@ Review and Confirm

X

) secure checkout

@ Contact Details

john.doe@visa.com

1234567890

© Payment Details (|5

Card details

Card number

X @ secure checkout

Edit ° Contact Details
john.doe@visa.com
1234567890

@ Payment Details LY |8

VISA ++++9342, Exp 06/29

227 Park Avenue #218

|

=]

New York, NY 10172

Expiry

Security code

e Shipping Details

‘MM v ‘/ Yy

|

‘ (] same as billing address

Edit

Edit

First name Last name
ng address lJOG ‘ l Soap ‘

First name Last name

Address
[John l i Doe l

i 123 Cool St I
Address

Address 2
i 277 Park Avenue l

(12]
Address 2

City
i #218 l

i Beverly Hills l
City

State
i New York l

‘Cahforma X ‘
State

Zip code
l New York v l

[90210 ‘
Zip code

Country
i 10172 I

‘ USA X ‘
Country
‘ USA v

@ Shipping Details

@ Review and Confirm

(@ Review and Confirm

‘

) secure Checkout X
Q Contact Details Edit
john.doe@visa.com
1234567890

@& Payment Details Y165

VISA ****9342, Exp 06/29 Edit

227 Park Avenue #218
New York, NY 10172

Q Shipping details Edit
Joe Soap
123 Cool St #12
Beverly Hills, CA 90210

o Review & Confirm

Please review and confirm your payment
information before you continue.

save my info above for faster
v
B D oo pay

By continuing, you agree to the Terms for

Click to Pay and understand your data will be
processed according to the Privacy Notice.

Complete Purchase

For more information on requesting the capture context, see Capture Context API (on page 89).

Digital Accept Secure Integration | Unified Checkout | 80

https://google.com

Client-Side Set Up

This section contains the information you need to set up the client side. You use the Unified Checkout
JavaScript library to add the payment interface to your e-commerce site. It has two primary
components:

* The button widget, which lists the payment methods available to the customer.

» The payment acceptance page, which captures payment information from the cardholder. You
can set up the payment acceptance page to be integrated with your webpage or added as a
sidebar.

Follow these steps to set up the client:

1. Load the JavaScript library.

2. Initialize the accept object, the capture context JWT. For information JSON Web Tokens, see
JSON Web Tokens (on page 123).

3. Initialize the unified payment object with optional parameters.

4. Show the button list or payment acceptance page or both.

The response to these interactions is a transient token that you use to retrieve the payment
information captured by the Ul

Loading the JavaScript Library and Invoking the Accept Function

Use the client library asset path returned by the capture context response to invoke Unified Checkout
on your page.

Get the JavaScript library URL dynamically from the capture context response. When decoded, it
appears in the JSON parameter clientLibrary as:

https://apitest.cybersource.com/up/vl/assets/x.y.z/SecureAcceptance.js

When you load the library, the capture context that you received from your initial server-side request
is used to invoke the accept function.

! Important: Use the clientLibrary parameter value in the capture context response to obtain
the Unified Checkout JavaScript library URL. This ensures that you are always using the most
up-to-date library. Do not hard-code the Unified Checkout JavaScript library URL.

Digital Accept Secure Integration | Unified Checkout | 81

JavaScript Example: Initializing the SDK

<script
src="https://apitest.cybersource.com/up/vl/assets/0.19.0/SecureAcceptance.js"></script>
<script>
Accept('header.payload.signature').then(function(accept) {
// use accept object
1

</script>

In this example, header.payload.signature refers to the capture context JWT.

Adding the Payment Application and Payment Acceptance

After you initialize the Unified Checkout object, you can add the payment application and payment
acceptance pages to your webpage. You can attach the Unified Checkout embedded tool and payment
acceptance pages to any named element within your HTML. Typically, they are attached to explicit
named <div> components that are replaced with Unified Checkout’s iframes.

Important: If you do not specify a location for the payment acceptance page, it is placed in
the side bar.

JavaScript Example: Setting Up with Full Sidebar

var authForm = document.getElementById("authForm");
var transientToken = document.getElementById("transientToken");

var cc = document.getElementById("captureContext").value;
var showArgs = {
containers: {
paymentSelection: "#buttonPaymentListContainer"
}
¥
Accept(cc)
.then(function(accept) {
return accept.unifiedPayments();
)
.then(function(up) {
return up.show(showArgs);

)
.then(function(tt) {

Digital Accept Secure Integration | Unified Checkout | 82

transientToken.value = tt;
authForm.submit();

})s

JavaScript Example: Setting Up with the Embedded Component

The main difference between using an embedded component and the sidebar is that the
accept.unifiedPayments object is set to false, and the location of the payment screen is passed in
the containers argument.

var authForm = document.getElementById("authForm");
var transientToken = document.getElementById("transientToken");

var cc = document.getElementById("captureContext").value;
var showArgs = {
containers: {
paymentSelection: "#buttonPaymentListContainer",
paymentScreen: "#embeddedPaymentContainer"

}
¥
Accept(cc)
.then(function(accept) {
// Gets the UC instance (e.g. what card brands I requested, any address information
I pre-filled etc.)
return accept.unifiedPayments();
)
.then(function(up) {
// Display the UC instance
return up.show(showArgs);
)
.then(function(tt) {
// Return transient token from UC's UI to our app
transientToken.value = tt;
authForm.submit();
}).catch(function(error) {
//merchant Llogic for handling issues
alert("something went wrong");

1)

Digital Accept Secure Integration | Unified Checkout | 83

Transient Tokens

The response to a successful customer interaction with Unified Checkout is a transient token. The
transient token is a reference to the payment data collected on your behalf. Tokens allow secure card
payments to occur without risk of exposure to sensitive payment information. The transient token is
a short-term token that lasts 15 minutes. This reduces your PCI burden/responsibility and ensures
that sensitive information is not exposed to your backend systems.

Transient Token Format

The transient token is issued as a JSON Web Token (JWT) (RFC 7519). For information on JSON Web
Tokens, see JSON Web Tokens (on page 123).

The payload portion of the token is a Base64-encoded JSON string and contains various claims. This
example shows a payload:

{
"iss" : "Flex/@0",
"exp" : 1706910242,
"type" : "gda-0.9.0",
"iat" : 1706909347,
"jti" : "1D1I202CSTMW3UIXOKEQFI40QX1L7CMSKDE3LJ8B5DVZ6WBIGKLQ65BD6222D426",
"content" : {
"orderInformation” : {
"billTo" : {

// Empty fields present within this node indicate which fields were captured by
// the application without exposing you to personally identifiable information
// directly.

¥
"amountDetails" : {
// Empty fields present within this node indicate which fields were captured by
// the application without exposing you to personally identifiable information
// directly.
¥
"shipTo" : {
// Empty fields present within this node indicate which fields were captured by
// the application without exposing you to personally identifiable information
// directly.
}
¥
"paymentInformation” : {
"card" : {
"expirationYear" : {
"value" : "2028"
¥
"number" : {

Digital Accept Secure Integration | Unified Checkout | 84

https://tools.ietf.org/html/rfc7519

"maskedValue" : "XXXXXXXXXXXX1111",
"bin" : "411111"
¥
"securityCode" : { },
"expirationMonth" : {
"value" : "o06"
¥
“type" : {
"value" : "@01"

Token Verification

When you receive the transient token, you should cryptographically verify its integrity using the
public key embedded within the capture context. Doing so verifies that Cybersource issued the token
and that the data has not been tampered with in transit. Verifying the transient token JWT involves
verifying the signature and various claims within the token. Programming languages each have their
own specific libraries to assist. For an example in Java, see: Java Example in Github.

Digital Accept Secure Integration | Unified Checkout | 85

https://github.com/CyberSource/cybersource-unified-checkout-sample-java/blob/main/src/main/java/com/cybersource/example/service/JwtProcessorService.java

Authorizations with a Transient Token

This section provides the minimum information required in order to perform a successful
authorization with a Unified Checkout transient token. Doong so eliminates the need to send
sensitive payment data along with the request.

To send the transient token with a request, use the tokenInformation.transientToken]wt field.

An API request made with a transient token looks like this:

"tokenInformation": {

"transientTokenJwt": "eyJraWQiOiIwO0G4zUnVsRTIGQXIDRktycVRkZF1kWGZSWFhMNXFONSISImFsZyI6I1l
JTMjU2In@.eyJpc3MiOiJlGbGVALZzA3TIiwiZXhwIjoxNTk3MDgOODk3LCIOeXB1IjoiZ2RhLTAUMSAxIiwialWFOIjox
NTk3MDgz0Tk3LCIqdGkiOiIxQzI2V1pSkVIUU1IPTzVIMDUWNEtINDdIMEFNMk1aRkMOM1Y1TDUGMUhCTE45Q09IMOW
3NUYzMTkORTESNKEXIN®.SNm1VZaZr3DkTqUg9CdVOF5arRe-uQU9oUWPKfWIpbIzIPZutRokv5DSDcM7asZIKNIyN
IBx5DLs1_yQPrKgzhwQxzZ8gbhto7cu3t-v8DHG2y0951p1PQVQnj7x-VvEDcXkLUL1F8sqY23R5HW-XxSDAQ3AFLawCc
kn7Q2eudRGeuMhLWH742Gf1{9Hz3KyKnmeNKA309yW2nal6nmeVZaYGqbUSPVITd15cMA®091Eob8E30QHOHHAMISuU
5uMA4x7DeBjfTKD1rQxFP3JBNVcv30AIMLKNcwOpHbtHDVZzKBWXUVXxvnm3zFEdiBuSAco2uWhC9zFgHrrp64ZvzxZq
OoGA"

}

To retrieve non-sensitive data from a Unified Checkout transient token, use the payment-details
endpoint. This data includes cardholder name and billing and shipping details. For more information,
see Payment Details API (on page 97).

! Important: Fields supplied directly in an API request supersede those that are also present
in the transient token. For example, in the request below, the total amount might have been
overridden because of a tax calculation.

Endpoint

Production: POST https://api.cybersource.com/pts/v2/payments

Test: POST https://apitest.cybersource.com/pts/v2/payments

Required Field for an Authorization with a Transient Token

tokenInformation.transientTokenJwt

Digital Accept Secure Integration | Unified Checkout | 86

https://developer.cybersource.com/docs/cybs/en-us/api-fields/reference/all/rest/api-fields/token-info-aa/token-info-transient-token-jwt.html

REST Example: Authorization with a Transient Token
Endpoint:
* Production: POST https://api.cybersource.com/pts/v2/payments

» Test: POST https://apitest.cybersource.com/pts/v2/payments

Request

Important: The transient token may already contain information such as billing address and
total amount. Any fields included in the request will supersede the information contained in
the transient token.

"tokenInformation": {

"transientTokenJwt": "eyJraWQiOiIwMFN2SWFHSWZ5YXc40TdyRGVHOWVGZESES2FDS2MxcSIsImFsZyI6I1
JTMjU2In@.eyJpc3MiOiIGbGVALZzAWIiwiZXhwIjoxNFEONzkyNTQOLCI®eXB1lIjoiYXBpLTAUMSAwIiwialWFOIjox
NjEONzkxNjQOLCIqdGkiOiIXRDBWMzFQMUEMRTNXNINWSkIZVE@4VUCXWEQYSO1PRUhIV1dBSURPKkhLNjJJISFQXUVE
INjAzRKkM3NjA2MD1DIn®@.FrN1ytYcpQkn8TtafyFZnJ3dV3uulXecDJ4TRIVZN-jpNbamcluAKVZ1zfdhbkrB6aNVi
ECSvjZrbEhDKCKHCG8IjChz17Kg642RWteLkWz30iofgQqFfzTugq41sDhlIgB-UatveU_2ukPxLY187EX9ytpx4zC3J
Vmj6zGqdNP3q35Q5y59cuLQYXxhRLk7WVXx9BUgW85t120HaajEc25tS1FwH3jDOfjAC8MU2MEk - Ew@-ukZ70Ce7Zaq4
cibg UTRx7_S2c4IUmRFS3wikS1Vm5bpvcKLrok 8b9YnddIzp@p@JOCjXC nuofQT7_x_-CQayx2czE@kD53HeNYC
5hQ"

}

Response to Successful Request

" links": {
"authReversal™: {
"method": "POST",
"href": "/pts/v2/payments/6826225725096718703955/reversals"”

}s
"self": {

"method": "GET",

"href": "/pts/v2/payments/6826225725096718703955"
}s

"capture": {
"method": "POST",
"href": "/pts/v2/payments/6826225725096718703955/captures"”

Digital Accept Secure Integration | Unified Checkout | 87

}s

"clientReferenceInformation”: {
"code": "TC50171_3"
}J
"id": "6826225725096718703955",
"orderInformation": {
"amountDetails": {
"authorizedAmount": "102.21",

"currency": "USD"
}
¥
"paymentAccountInformation”: {
"card": {
"type": "@01"
}
¥

"paymentInformation™: {
"tokenizedCard": {

"type": "@01"
}s
"card": {

"type": "@01"
}s

"customer": {

"id": "AAE3DD3DED844001E05341588EQADOD6"

}s
"pointOfSaleInformation": {

"terminalId": "111111"
}J
"processorInformation”: {
"approvalCode": "888888",
"networkTransactionId": "123456789619999",
"transactionId": "123456789619999",
"responseCode": "100",
"avs": {
"code": "X",
"codeRaw": "I1"

}s
"reconciliationId": "68450467YGMSJY18",

"status": "AUTHORIZED",
"submitTimeUtc": "2023-04-27T19:09:32Z"

}

Digital Accept Secure Integration | Unified Checkout | 88

Capture Context API

This section contains the information you need to request the capture context using the capture
context API.

The capture context request contains all of the merchant-specific parameters that tell the frontend
JavaScript library how to behave within your payment experience.

The capture context is a signed]SON Web Token (JWT) containing this information:

» Merchant-specific parameters that dictate the customer payment experience for the current
payment transaction.

* A one-time public key that secures the information flow during the current payment
transaction.

For information on JSON Web Tokens, see JSON Web Tokens (on page 123).
The capture context is signed with long-lasting keys so that its authenticity can be validated.

You can define the payment cards and other application features in the capture context. Use the
allowedCardNetworks field to define the card types. These are the available card networks:

* American Express
* Diners Club
* Discover
*JCB
* Mastercard
* Visa
Use the allowedPaymentTypes field to define the digital payment methods.
For more information on enabling and managing these digital payment methods, see these topics:
* Enabling Click to Pay (on page 102)

* Enrolling in Google Pay (on page 102)

Digital Accept Secure Integration | Unified Checkout | 89

Important:

When integrating with Cybersource APIs, Cybersource recommends that you dynamically
parse the response for the fields that you are looking for. Additional fields may be added in
the future.

You must ensure that your integration can handle new fields that are returned in the
response. While the underlying data structures will not change, you must also ensure that
your integration can handle changes to the order in which the data is returned. Cybersource

uses semantic versioning practices, which enables you to retain backwards compatibility as
new fields are introduced in minor version updates.

Endpoint

Production: POST https://api.cybersource.com/up/vl/capture-contexts

Test: POST https://apitest.cybersource.com/up/vl/capture-contexts

Digital Accept Secure Integration | Unified Checkout | 90

Required Fields for Requesting the Capture Context

Your capture context request must include these fields:
allowedPaymentTypes
clientVersion
country
locale
orderInformation.amountDetails.currency
orderInformation.amountDetails.total Amount

targetOrigins
The URL in this field value must contain https.

For a complete list of fields you can include in your request, see the Cybersource REST API Reference.

REST Example: Requesting the Capture Context

Endpoint:
* Production: POST https://api.cybersource.com/up/vl/capture-contexts

Test: POST https://apitest.cybersource.com/up/vl/capture-contexts

Request

"targetOrigins": [
"https://unified-payments.appspot.com"
])
"clientVersion": "0.19",
"allowedCardNetworks" : ["VISA", "MASTERCARD", "AMEX"],
"allowedPaymentTypes" : ["CLICKTOPAY", "PANENTRY", "GOOGLEPAY"],
"country": "US",
"locale": "en_US",
"captureMandate": {
"billingType": "FULL",
"requestEmail": true,
"requestPhone": true,
"requestShipping": true,
"shipToCountries": [

Digital Accept Secure Integration | Unified Checkout | 91

https://developer.cybersource.com/docs/cybs/en-us/api-fields/reference/all/rest/api-fields/allowed-payment-types.html
https://developer.cybersource.com/docs/cybs/en-us/api-fields/reference/all/rest/api-fields/client-version.html
https://developer.cybersource.com/docs/cybs/en-us/api-fields/reference/all/rest/api-fields/country.html
https://developer.cybersource.com/docs/cybs/en-us/api-fields/reference/all/rest/api-fields/locale.html
https://developer.cybersource.com/docs/cybs/en-us/api-fields/reference/all/rest/api-fields/order-info-aa/order-info-amount-details-currency.html
https://developer.cybersource.com/docs/cybs/en-us/api-fields/reference/all/rest/api-fields/order-info-aa/order-info-amount-details-total-amount.html
https://developer.cybersource.com/docs/cybs/en-us/api-fields/reference/all/rest/api-fields/target-origins.html
https://developer.cybersource.com/api-reference-assets/index.html#unified-checkout
https://developer.cybersource.com/api-reference-assets/index.html#unified-checkout

ys™,
"UK"
Is

"showAcceptedNetworkIcons": true
}J
"orderInformation”: {
"amountDetails": {
"totalAmount": "21.00",
"currency": "USD"

¥
"billTo": {
"address1": "1111 Park Street",
"address2": "Apartment 24B",
"administrativeArea": "NY",
"country": "US",
"district": "district",
"locality": "New York",
"postalCode": "00000",
"company": {
"name": "Visa Inc",
"addressl": "900 Metro Center Blvd",
"administrativeArea": "CA",
"buildingNumber": "1",
"country": "US",
"district": "district",
"locality": "Foster City",
"postalCode": "94404"
¥
"email”: "maya.tran@company.com",
"firstName": "Maya",
"lastName": "Tran",
"middleName": "S",
"title": "Ms",
"phoneNumber": "1234567890",
"phoneType": "phoneType"
¥
"shipTo": {
"address1": "Visa",
"address2": "123 Main Street",
"address3": "Apartment 102",
"administrativeArea": "CA",
"buildingNumber": "string",
"country": "US",
"locality": "Springfield",
"postalCode": "99999",
"firstName": "Joe",
"lastName": "Soap"
}

Digital Accept Secure Integration | Unified Checkout | 92

Successful Encrypted JWT Response to Request

eyJralWQiOiJgNCIsImFsZyI6I1JTMjU2In@.eyImbHgiONsicGFPaCI6IiombGVAL3YyL3Rva2VucyIsImRhdGEiOi
JHeUhXVOd5SG51K2F1d1JsalVUaGIoQUFFQVZMbTR6QTAGUHBGaGFXOHVSZ2UVNFQweEtIbWOKUWNYaE1hdORmVzVQ
VFBLNXB1Z0@5vRkVocnNacjdnbldLeHBRATNWSm4vTDBjbmZ0aTRSdjd1TElcdTAWM2QiLCIvcmlnaW4ioiJodHRwcz
ovL3NeYWd1Zmx1leC5jeWI1cnNvdXJjZS5jb20ilLCIqd2siOnsia3R5IjoiUINBIiwiZSI6IkFRQUIiLCI1c2Ui0idl
bmMiLCJuIjoibVhHbilDb1l1DX1pkODVQdTJaaDluVDdZOUpQX1RjUVIBSz1BQTFHQkIfOFVXd2FHWEZIMGxfa2EwXz
VoekF1leUSuVWZLQO16WFFHV2dMZ2hnZXdLMjJzW1VXVTdDTOK4ARKNTWktpUjBYRGI2TTVZYkYxejkOTmNmWVIGcOpo
ZzhTbE1jY@stS@OtOUFjd1dYQW1XUESOMk5GZn1IVES5uX3BpVDdhZHRDMGFZQ1lhCdkw2WXFmcWM5bXBua@5FQTIVNO
X5VWFYRy1rVFVIQW8xX2tjdW1tTEF1X1Y50EQyMndsaHMtekhEcnFVTFhsNEdKSGF6WjNXVWIDWHc5c@o2dFowVmVn
X1Bpbnhmck9mazA@RWNaV1M5c1BXWWIHRNA3V2NyROFQTKkRCQzFPZONKNWImRmpMNEtpcVpVNURpTWFsbURGdzg5VV
plbl1BVW1rdUU1SURRIiwia21kIjoiMDBDeWg5UHhhdDdCUkMwa@pXUG5hUVIsOU9jTGMzZVoifX0sImNOeCI6W3si
ZGFOYSI6eyJhbGxvd2VkUGF5bWVudFR5cGVzIjpbeyIwYWd1IjoxLCI@eXB1IjoiUEFORUSUUlkifSx7InBhZ2Ui0j
IsINR5cGUi0iJTUKNWSVNBINO@seyIwYWd1IjozLCI0eXB1IjoiU1IDTUFTVEVSQOFSRCIILHSicGFnZSI6NCwidH1w
ZSI6IINSQOFNRVgEifSx7InBhZ2Ui0jUsINR5cGUi0iJHTOOHTEVQQVkifSx7InBhZ2Ui0jYsInR5cGUi0iIBUFBMRV
BBWSJ9XSwicGF5bWVUdENVbmMZpZ3VyYXRpb25zIjp7I1INSQ1ZIUGEiOnsib3IpZ21luljoiaHROCHM6LY9zYWS5kYm94
LWFzc2Vecy5zZWN1cmUuY2hlY2tvdXQudmlzYS5]jb20iLCIwYXRoIjoil2NoZWNrb3VOLXdpZGd1dCOyZXNvdXIFZX
MvanMvc3JjLWktYWRhcHR1ci92aXNhU2RrLmpzIiwicGFuRW5jcnlwdGlvbktleSI6eyJrdHkiOiJSUREiIiLCI1Ijoi
QVFBQiIsInVzZSI6ImVuYyIsImtpZCI6I1ldaTEQzSOVBUFAIRThMS@pEMUOXMTNYMXEXxamZUZESpNTIOal9aQuWxLVm
t1lanBxMOEiLCJuIjoic1lpQSXVzRGY3eVFubmhCalU5bXUXNFZPTzNDcnVpM2I3ckFmMktZZW9iVVItWEEXN2IXS1g5
amcwQ2QtdmdwbXV5VHI4Q1VTYy00YjAtVVBnU3dHRNFQV1VweDA4ARXhxcndQRE92Rm9gQm91MndseXE4AYmNSMFVz LU
IMZUN6UGU1bEIWZFNYVFhYWGNOCcXUtcWIyMmpDQONKQUxweHNBcnNib@1PWHNMZWRoMOBOWESRNVhHQXRSZjdilS11
VFk1RHI5SOxZeVV2WktBblkwNE1LS1BFTzUGWW1IRkO1RFRBAaE5PbXMwOD1qZE1keC1VUk1LSmpQVTItUnBIRZF10E
XDRzAyOF JUSXBQcO5iUmFudVM1VEFZX3pseERNYjFoS@0zN11iWkVOSExnOVBYVEJ0ZE9NbFUSMERUTGXxmY2IMVGEt
RDAEZ2xqQWFXQ3V2ekxQYUd3In@sInBhcmFtZXR1cnMiOnsic3JjSW5pdG1lhdGOySWQi0iJSNDVOMzQzRDZLWFpSWU
1CSVhMSTIxeDgtWGtMaWh4Q211cFMzaEF1Um91RWcwaTVVIiwic3J3jaURwYUlkIjoiOTBhZD1hN2QtOTUSNi@OZWQX
LWE3MTEtMmJIjOT11M2JIjNWZmIiwic3IjaVRyYW5z2YWNOaWIuSWQi0iIzMWIKNTRjZi1hOGIyLTQWMTEtODQONy1jY]j
€zZDM40GUONjYiLCIkcGFUcmFuc2FjdGlvbkOwdGlvbnMiOnsiZHBhTG9jYWx1IjoiZW5FVVMiLCIwYX1sb2FkVH1w
ZUluZG1ljYXRvciI6IkZVTEWiLCJyZXZpZXdBY3Rpb24i0iJjb250aW51ZSIsImRwYUFjY2VwdGVkQmlsbGluZoONvdwW
50cmllcyI6W10sImRwYUFjY2VwdGVkU2hpcHBpbmdDb3VudHIpZXMiOltdLCIkcGFCaWxsaW5nUHI1ZmVyZW53ZSI6
IKFMTCIsImRwYVNoaXBwaW5nUHI1ZmVyZW5jZSI6IkFMTCISImNvbnN1bWVYyTmFtZVI1cXV1c3R1ZCI6dHI1ZSwiY2
9uc3VtZXIFbWFpbEFkZHI1c3NSZXF1ZXNOZWQiOnRydWUs ImNvbnN1bWVyUGhvbmVOdW1iZXISZXF1ZXNOZWQiOnRy
dWUsInRyYW5zYWNOaWOuUQW1vdW50Ijp7InRyYW5zYWNOaWOUQW1vdiW50IjoiMSAwMSIsInRyYW5zYWNOaWOuQ3Vycm
VuY31Db2R1IjoiVVNEIn@sInBheWllbnRPcHRpb25zIjp7ImRwYURSbmFtaWNEYXRhVHRSTWl1udXR1cyI6MTUSImMRS
bmFtaWNEYXRhVH1IWZSI6I1RBV1YiLCIkcGFQYW5SZXF1ZXNOZWQiOmZhbHN1X19fSwiU1IDTUFTVEVSQOFSRCI6ey
JvcmlnaW4iOiJodHRwczovL3NhbmRib3guc3J3jLmlihc3R1cmNhcmQuY29tIiwicGFRaCI6Ii9zZGsvc3Ijc2Rrlmlh
c3R1cmNhecmQuanMiLCIwYWSFbmNyeXBOaW9uS2V5Ijp7Imt@eSI6I1ITQSISIMUiOiIJBUUFCIiwidXN1IjoiZW5]Ii
wia2lkIjoiMjAyMzAyMDcyMjMIMjEtc2FuZGIveCimcGFuLWVuY335cHRpb24tc3JjLWlhc3R1cmNhcmQtaw50Iiwi
a2V5X29wcyI6WyJ1bmNyeXBOIiwid3JhcEtleSIdLCIhbGciOiISUGEtTOFFUCOYNTYiLCIJuIjoidDA2SThzamxTLX
Jyczd1Q2FnSDh1dm91dW1hUm92S3ppW1INIOVMYTj1IRFESdFcyUGFwZ1JhOUxjMUt2ZUVCRFZzMjdQa2hrVTVPeUhn
UDBpRWpUdUtWcHZONTIUNGXhLW1CU®LsczdVZWNVUUXMYTBXa21idEw3ak5kbHRBNWZXNOFoYOFYNXFjYTkAOHFy TG
Q3SX1yOUUwQzNUeGIJUOXRVMW1RY3B60G9jWk9EUlhvaWRGQW5PVkwlWUdGbWxzcmVEYko@VmhzaTBWQWRjY1FjahWwt
eWRTZ3VySeItcnFLcHBiOWVwb211NFFVaDMz0ODIDdjhOb23ZbUYzb3MAbkdHZOdQLWNSWGBwbnNLY1BBZ2ZybFF6b3

Digital Accept Secure Integration | Unified Checkout | 93

M3cUh4VU9yRmUyeF9sWjFHMUFFLVhya334akJ5cz1xNTNHTVITTKNROGMtX21jRj1lwYnE@SF1Ccy12RDVRINOsINnBh
cmFtZXR1cnMiOnsic3JjaVRyYW5zYWNOaWOuUSWQiOiIzMWIKNTRjZi1hOGIyLTQWMTEtODQONyY1jYjczZDMAOGUON j
YiLCJzcmNpRHBhSWQi0iI50DQ4Y2ZmNC1jODYOLTRmMMTgtOWYwMy1hOGY1MGE20TI1ZGRfc31zdGVtdGVzdCIsInNy
Y@luaXRpYXRvcklkIjoiNmY1ZDZjMDktZjh1lMi@OMzMWLWEZZGYtMjBiOWFKN2EONTIiIiwiZHBhVHIhbnNhY3Rpb2
5PcHRpb25zIjp7InRyYW5zYWNOaWOUVHIWZSI6I1BVUKNIQVNFIiwiZHBhTG9jYWXx1IjoiZW5fVVMiLCIkcGFBY2N1
cHR1ZFNoaXBwaW5nQ291bnRyaWVzIjpbXSwiY29uc3VtZXIFbWFpbEFkZHI1c3NSZXF1ZXNOZWQiOnRydWUsImNvbn
N1bWVyUGhvbmVOdW1iZXISZXF1ZXNOZWQiOnRydWUsINRyYW5zYWNOaWOuQW1vdW50Ijp7 InRyYW5zYWNOaWOuQW1v
dW50IjoiMSAWMSISINRYYW5zYWNOaW9uQ3VycmVuY31Db2R1IjoiVVNEINOsImRwWYUFjY2VwdGVkQmlsbGluZONvdW
50cmllcyI6W10sImRwYUIpbGxpbmdQcmVmZXI1bmN1IjoiR1VMTCIsImRwYVNoaXBwaW5nUHI1ZmVyZW53ZSI6IkZV
TEwilLCJjb25zdW11ck5hbWVSZXF1ZXNOZWQiOnRydWUsInBheWxvYWRUeXB1SW5kaWNhdGOyIjoiR1VMTCIsInBhelW
11bnRPcHRpb25zIjp7ImR5bmFtaWNEYXRhVH1wZSI6IKNBUKRFQVBQTE1DQVRITO5FQ1IZUFRPR1IBTVOTSE9SVFIG
T1ININ19fX0sI1INSQOFNRVgiOnsib3Jpz2luljoiaHROCHM6LY9xd3d3LmFleHAtc3RhdGljLmNvbSIsInBhdGgiOi
IVYWthbWFpL3J1bW9OZWNvbW11lcmN1L3NjcmlwdHMVYW11eFNESYyOxLjAuMC5qcyIsInBhbkVuY3J5cHRpb25LZXki
Onsia3R5IjoiUINBIiwiZSI6IKFRQUIiLCI1c2UiOiJ1bmMiLCIraWQiOilzcmMtYW11eC1jYXIKLWVUYyOyMDIOIi
wiYWxnIjoiUINBLU9BRVAtMjU2IiwibiI6Im1FazBibUxDM1pRVy1hNEtYMWSEWTNaZ1BMRNnIJIOHRUVX1JYjVrVEtn
emF1YWdpbWFINFhxUDRadzAlaWk2TXZkdk4wVDIweVNKUTRgb2toUEMySVd1bW1WUEc4ZkNQQk1KeHhqeTIFdT1lvdG
JpdedSQkNneHdjdS1hY2pZYXVwV1BORE43ZWSnSERKbkINYXIsbodyUFVNNk1FRVpXX3ZFQj1jU3INX@IhOFNjQzhS
YWZNnT1NZODFpeGF4UEE4Y@®90QUF2ckxRNOtoRTVReFN6SUImMcnpiMUXCWUAMNF1QQnVuZk5BMnczZnZMd2ZCbDIfLV
JGUKNVbVBFdjFOdVhxeG8xUk4wO0GoydW44ZW1jR3ZudDBndCOYMWSHcmI jNnhwcDdwWlkyb2otaGMwiW1VsTnl1FX2tK
CEXTNUSVWjhHZU9acDRxV1J4aGtIJUEd4RWVGLVFXaVNnOHVXazF4Nm5jdGhy TVVKWVYXSFB1OHRIa@pEbThBYS1EC2
hQTmVpeERgX1ZGVkVTOFYteU1lJUndnLVUyODIXUGIWVDIO®S1JYZG5gbE52Y2xCcOL1FNFZ3ZzVjVeVoU2tTc3pVQXkx
UENTRm5rWjVIRU9yaGdfMFRwZTdhaU84dzVzUndOaFpuUnBKeUlzUHQtbE1Dbzd6cjg1QjJ2eGNVUGZmMULINWMOZaIn
@sInBhcmFtZXR1cnMiOnsic3JjaVRyYW5zYWNOaWOuUSWQiOiIzMWIKNTRjZi1hOGIyLTQwWMTEtODQONy1jYjczZDM4
OGUONJjYiLCJIzcmNIbm1lOaWFOb333ZCI6IMQyZTdkOTc1LWIWYWEENGZhYSO5YTUXLTYAMDAYMjkwZDCcINiIsImRwYU
RhdGEiOnsiZHBhTmFtZSI6InR1c3QgU2hvcCB3ZWIzaXR1IFJ1Z221zdHIhdGlvbiIsImRwYUxvZ29VcmkiOiJodHRw
0i8vd3d3LnR1c3RzcmNyZWdpc3RyYXRpb24uY29tIiwiZHBhUHI1c2VudGF@aWOuTmFtZSI6InR1c3QgU2hvcCB3ZIW
JzaXR1IFJ1Z21zdHJhdGlvbiIsImRwYVVyaSI6Imh@dHA6LY93d3cudGVzdHNyY331Z21zdHIhdGlvbi5jb20ifSwi
ZHBhVHIhbnNhY3Rpb25PcHRpb25zIjp7 IMRWYUXVY2FsZSI6ImVuX1VTIiwiZHBhQWNjZXBOZWRCalWxsaW5nQ291bn
RyaWVzIjpbXSwiZHBhQWN]jZXBOZWRTaGlwcGluZONvdW50cmllcyI6W10sImRwYUIpbGxpbmdQcmVmZXI1bmN1Ijoi
QUXMIiwiZHBhU2hpcHBpbmdQcmVmZXJI1bmN1IjoiQUXMIiwiY29uc3VtZXIOYW11UmVxdWVzdGVkIjp@cnV1LCIjb2
5zdW11ckVtYW1sQWRkcmVzc1J1cXV1c3R1ZCI6dHI1ZSwiY29uc3VtZXIQaG9uZU51bWI1lc1I1cXV1c3R1ZCI6dHI1
ZSwicmV2aWV3QWNOaW9uIjoiY29udGludWUilCI®aHI1ZURZUHI1ZmVyZW5jZSI6IKk5PTkUiLCIwYX1tZW50T3BOalW
9ucyI6W3siZH1uYW1pYORhdGFUeXB1IjoiRF10QU1JQ19DQVIEXINFQ1VSSVRZXONPREUiLCIkcGFEeWShbW1jRGFO
YVRObE1pbnVOZXMi0iIXNSI9XX19fSwiRO9PROXFUEFZIjp7ImNsaWVudExpYnJhcnkiOiJodHRwczovL3BheS5nb2
9nbGUuUY29tL2dwL3AvanMvcGF5LmpzIiwicGF5bWVudESwdGlvbnMiOnsiZW52aXJvbm11bnQi0iJURVNUIN®sInBh
eW11bnREYXRhUmVxdWVzdCI6eyJhcGlWZXJIzaW9uIjoyLCIhcG1WZXIzaWOuTWlub3IiOjAsImllcmNoYW50SW5mby
I6eyJtZXJjaGFudE1kIjoiQkNSMkRONFQ3RERZQIRUViIsIm11lcmNoYW50TmFtZSI6I1VuaWZpZWQgQ2hlY2tvdXQg
TWVYY2hhbnQifSwiYWxsb3d1ZFBheWl1bnRNZXRob2RzIjpbeyl0eXB1lIjoiQOFSRCIsInBhcmFtZXR1cnMiOnsiYW
xsb3d1ZEF1dGhNZXRob2RzIjpbI1BBT19PTkxZIiwiQ1JZUFRPR1IBTV8ZzRFMiXSwiYWxsb3d1ZENhcmROZXR3b3Jr
cyI6WyIJWSVNBIiwiTUFTVEVSQOFSRCISIKFNRVgiXSwiYmlsbGluZOFkZHI1c3NSZXF1aXJ1ZCI6dHI1ZSwiYmlsbG
1uZOFkZHJI1c3NQYXJIhbWVOZXJIzIjp7ImZvcmlhdCI6IKZVTEWiLCIwaGOuZU51bWI1lclI1cXVpcmVkIjpOcnV1fX0s
InRva2VuaXphdGlvb1NwZWNpZmljYXRpb24iOnsidH1wZSI6I1BBWU1FT1RFROFURVABWSIsInBhcmFtZXR1cnMiOn
siZ2F@ZXdheSI6IMN5YmVyc291cmN1IiwiZ2F0ZXdheU1lcmNoYW50SWQi0iJwc190cGEifX19XSwidHIhbnNhY3Rp
b253IbmZvIjp7InRvdGFsUHIpY2VTdGFOdXMi0iJGSUSBTCISINRVAGFSUHIpY2Ui0iIxLjAxIiwiY291bnRyeUNVZG
UiOiJVUyIsImN1cnJ1bmN5Q29kZSI6I1VTRCIOLCI1bWFpbFI1cXVpecmVkIjpOcnV1LCIzaGlwcGluZOFkZHI1c3NS
ZXF1aXJ1ZCI6dHI1ZSwic2hpcHBpbmdBZGRYyZXNzUGFYYW11dGVycyI6eyJwaG9uZU51bWI1clI1cXVpcmVkIjpocn
V1fX19LCIBUFBMRVBBWSI6eyJzZXNzaW9uUGFOaCI6IiombGVAL3YyL2FwcGx1L3BheWllbnQtc2Vzc2lvbnMilCJIt
ZXJjaGFudE1kZW50aWZpZXIi0iJtZXJjaGFudC5jb20uY31iZXIzb3VyY2Uuc3RhZ2VmbGV4IiwiZGlzcGxheUS5hbW
Ui0iJVQyBUZXNOIN19LCIjYXBOAXI1TWFUZGFOZSI6eyJiaWxsaW5nVHIWZSI6IKZVTEWiLCIyZXF1ZXNORW1haWwi

Digital Accept Secure Integration | Unified Checkout | 94

OnRydWUsInJ1cXV1c3RQaGOuZSI6dHI1ZSwicmVxdWVzdFNoaXBwaW5nIjp@cnV1LCIzaGlwVG9ODb3VudHIpZXMiOl
tdLCJIZzaG93QWNFZXBOZWROZXR3b3JIrSWNvbnMiOnRydWVILCIvecmR1lckluZmOybWF@aWOuIjp7ImFtb3VudER1dGFp
bHMiONnsidG9OYWXBbW91bnQiOiIxLjAXxIiwiY3VycmVuY3ki0iJVUBQifX0sInRhcmdldE9yaWdpbnMiOlsiaHROcH
M6Ly90aGUtdXAtZGVtby5hcHBzcGIOLMNVbSIdLCIpZnIhbWVzIjp7ImljZSI6IiotY2UvaWZyYW11llmhObWwilCJIi
dXROb25zIjoil2I1dHRvbmxpc3QvaWzZyYW11lLmhObWwilCIzcmMiOiIvc2VjdXJI1LXI1bW90ZS1jb21tZXIjZS9zcm
MuaHRtbCIsImNOcCI6Ii9jdHAVY3RwWLMhObWwilCInb29nbGVwYXki0iIvZ29vZ2x1cGF5L2dvb2dsZXBheS50dGls
TiwiYXBwbGVWYXkiOiIvYXBwbGVwYXkvYXBwbGVwYXkuaHRtbCIsInBhemUiOiIvcGF6ZSOwYXplLmhObWwifSwiY2
XpZW50VmVyc21vbiI6IjAuMTkiLCIjb3VudHI5IjoiVVMilLCIsb2NhbGUi0iJ1b19VUyIsImFsbG93ZWRDYXIkTmVeO
d29ya3MiOlsiVk1lTQSIsIk1BUIRFUKNBUkQiLCIBTUVYI1OsImNyIjoiNmMOdUcyemFXdVBvbkxLMOR2NEwxV1IpTF
VOMkFVczY4QU84bVdaUTAOX1RNLVFDADhNUDNTQk1vcGQ2Y2NtOTdmSE01QXViVzh6VFhITWO1TTRjQWFrbm8ONktI
VndGRFpxQOtfWTVWMEVZRHIMdFVTREFrZ21KZOpNbHI2cnYzTkpFOWdzc1dBM18zdDIBR2hQbEtfMU9rZyIsInNlcn
ZpY2VPcmlnaW4iOiJodHRwczovL3NOYWd1dXAuY31iZXJIzb3VyY2UuY29tIiwiY2xpZW50TGlicmFyeSI6ImhO@dHBz
0i8vc3RhzZ2V1cC5jeWI1cnNvdX3jZS5jb20vdXAvdjEVYXNZZXRzLzZAUMTKkuMCOTZWN1cmVBY2N1cHRhbmN1LmpzIi
wibG9nZ21uzZ1BhdGgiOiIvdXAvdjEvbGOnLWV2ZW50cyIsImFzc2VOc1BhdGgiOiIvdXAvdjEVYXNzZXRzLzAuMTku
MCIsImNsaWVudExpYnJhcnllbnR1Z3JpdHkiOiJzaGEYNTYtW11DT2tucVh5bjRad3NyOFYwaE50cjZauitzZzYThIbH
NkdFplTkhPbDJYVVXx1MDAZzZCJI9LCJ0eXB1IjoiZ2RhLTAUOS4WIN1dLCIpc3MiOiJGbGVAIEFQSSIsImVAcCIBMTCX
MDk2NDc4MCwiaWFOIjoxNzEwOTYzODgwLCIqdGkiOiI4SWs4bHU2NEh3NmpDVDhsIn® . XWXmjiZZGyHWIhT1hbBnc2
xfhcYczpBYxhTn4gONMt2utMaPR8wIWcZ8TYDXd8HRLBWZkktkXxFFetJ4Tc6dQ4irZ6KmalWItWEUIpjN-5sLC4Qrl
gG1JO00H5_hK6n_1hnjcQeRUBg-MsCSRBE_MA6ROSZgyfcl WwLOglTQUiKN5SvaM_37o00imebPQfvYyXyR_6Zkn9fu
51w6NF_QjowtuQP4J4P3cgyZzzOFNKuHOWi7ISmyW6BcQXQrec577SRBfcMhhC3PBx150rXuadqUl_qYbplA8P4n6f
2--onAYef3UXFHmc28eRiTEeN@1OP1Yj45CIotbuw36mZrnRPQ

Decrypted Capture Context Header

"kid": "j4")
"alg": "R5256"

Decrypted Capture Context Body with Selected Fields

{
"flx" i {
// filled with token metadata
¥
"ctx" [{
// filled with data related to your capture context request parameters
"data" : {
"clientLibrary" : "https://https://
apitest.cybersource.com/up/vl/assets/0.19.0/SecureAcceptance.js"
¥
"type" : "gda-0.9.0"
YL
"iss" : "Flex API",

Digital Accept Secure Integration | Unified Checkout | 95

"exp" : 1710964780,
"iat" : 1710963880,
"jti" : "8Ik8lu64HwW6jCT81"

Digital Accept Secure Integration | Unified Checkout | 96

Payment Details API
This section contains the information you need to retrieve the non-sensitive data associated with
a Unified Checkout transient token and the payment details API. This API can be used to retrieve

personally identifiable information, such as the cardholder name and billing and shipping details,
without retrieving payment credentials; which helps ease the PCI compliance burden.

There are two methods of authentication:

* HTTP Signature Authentication

* JSON Web Token

Digital Accept Secure Integration | Unified Checkout | 97

https://developer.cybersource.com/docs/cybs/en-us/platform/developer/all/rest/rest-getting-started/restgs-http-message-conf-intro.html
https://developer.cybersource.com/docs/cybs/en-us/platform/developer/all/rest/rest-getting-started/restgs-jwt-const-intro.html

Important:

When integrating with Cybersource APIs, Cybersource recommends that you dynamically
parse the response for the fields that you are looking for. Additional fields may be added in
the future.

You must ensure that your integration can handle new fields that are returned in the
response. While the underlying data structures will not change, you must also ensure that
your integration can handle changes to the order in which the data is returned. Cybersource

uses semantic versioning practices, which enables you to retain backwards compatibility as
new fields are introduced in minor version updates.

Endpoint

Production: GET https://api.cybersource.com/up/vl/payment-details/{id}

Test: GET https://apitest.cybersource.com/up/vl/payment-details/{id}

The {id} is the full JWT received from Unified Checkout as the result of capturing payment

information. The transient token is a JWT object that you retrieved as part of a successful capture of
payment information from a cardholder.

Digital Accept Secure Integration | Unified Checkout | 98

Required Field for Retrieving Transient Token Payment Details

Your request must include this field:
id

Set to the {id} of the full JWT received from Unified Checkout as the result of capturing
payment information.

REST Example: Retrieving Transient Token Payment Details
Endpoint:

* Production: GET https://api.cybersource.com/up/vl/payment-details/{id}

» Test: GET https://apitest.cybersource.com/up/vl/payment-details/{id}

The {id} is the full JWT received from Unified Checkout as the result of capturing payment
information. The transient token is a JWT object that you retrieved as part of a successful capture of
payment information from a cardholder.

Request

GET https://apitest.cybersource.com/up/vl/payment-details/{id}

Response to Successful Request

{
"paymentInformation": {
"card": {
"expirationYear": "2024",
"number™: "XXXXXXXXXXXX1111",
"expirationMonth": "@5",
"type": "@01"
}
}J

"orderInformation": {
"amountDetails": {
"totalAmount": "21.00",

"currency": "USD"
}s
"billTo": {
"lastName": "Lee",

"country": "US",

Digital Accept Secure Integration | Unified Checkout | 99

"firstName": "Tanya",

"email"”: "tanyalee@example.com"

¥

"shipTo": {
"locality": "Small Town",
"country": "US",
"administrativeArea": "CA",
"address1": "123 Main Street",
"postalCode": "98765"

}

}

Unified Checkout Configuration

This section contains information necessary to configure Unified Checkout in the Business Center:

* Enable Digital Payments (on page 101)

* Manage Permissions (on page 103)

Digital Accept Secure Integration | Unified Checkout | 100

Enable Digital Payments
To enable digital payments on Unified Checkout, you must first register for each digital payment
method that you would like enabled on your page. This enablement process sends the appropriate

information to the digital payment systems and registers your page with each system.

Enable digital payments for Unified Checkout in the Business Center. A list of these available digital
payment methods offered by Unified Checkout should be visible:

* Apple Pay
* Click to Pay

* Google Pay

For more information on enabling and managing these digital payment methods, see these topics:

* Enabling Click to Pay (on page 102)

* Enrolling in Google Pay (on page 102)

Digital Accept Secure Integration | Unified Checkout | 101

Enabling Click to Pay

Click to Pay is a digital payment solution that allows customers to pay with their preferred card
network and issuer without entering their card details on every website. Customers can use Visa,
Mastercard, and American Express cards to streamline their purchase experience. Click to Pay
provides a fast, secure, and consistent checkout experience across devices and browsers.

Follow these steps to enable in Click to Pay on Unified Checkout:

1. Navigate to Payment Configuration > Unified Checkout.
2. In the Click to Pay section, click Set Up.
3. Enter your business name and website URL.

4. Click Submit.
You can now accept digital payments with Click to Pay.

Enrolling in Google Pay

Google Pay is a digital payment product offered by Google through Chrome browsers and Android
devices.

Follow these steps to enroll in Google Pay on Unified Checkout:
1. Navigate to Payment Configuration > Unified Checkout.
2. In the Google Pay section, click Set Up.

3. Enter your business name.

4. Click Submit.
You can now accept digital payments with Google Pay.

Digital Accept Secure Integration | Unified Checkout | 102

Manage Permissions

Portfolio administrators can set permissions for new or existing Business Center user roles for
Unified Checkout. Administrators retain full read and write permissions. They enable you to regulate
access to specific pages and specify who can access, view, or amend digital products within Unified
Checkout.

Portfolio administrators must apply the appropriate user role permission for any existing or newly
created Business Center user roles for Unified Checkout. For information on managing permissions
as a portfolio administrator, see Managing Permissions as a Portfolio Administrator (on page 105).

If you are a transacting merchant, you might find that your permissions are restricted. If your
permissions are restricted, a message appears indicating that you do not have access, or buttons
might appear gray. To make changes to your digital products within Unified Checkout that have
restricted permissions, contact your portfolio administrator's customer support representative. For
more information, see Managing Permissions as a Direct Merchant (on page 104).

Digital Accept Secure Integration | Unified Checkout | 103

Managing Permissions as a Direct Merchant

Follow these steps to configure and manage user permissions in the Business Center for Unified
Checkout as a direct merchant:

1. On the left navigation panel, navigate to Account Management.
2. Click Roles to display a list of your user roles.

3. Click the pencil icon next to the user role that you want to update.
4. Click Payment Configuration Permission.

5. Select the relevant permission for the specific user role you are editing. You can select from
these Unified Checkout permissions:

o Unified Checkout View

o Unified Checkout Manage

Important: If you are a transacting merchant without view permissions, Unified
Checkout will still appear on the navigation bar, however, a no access message appears
when you access Unified Checkout.

If you are a transacting merchant with view permissions but not management

permissions, you can access the Unified Checkout screens and view the different
payment methods configurations, however, you cannot edit or enroll new products.

Digital Accept Secure Integration | Unified Checkout | 104

Managing Permissions as a Portfolio Administrator

Follow these steps to configure and manage user permissions in the Business Center for Unified
Checkout as a portfolio administrator:

1. On the left navigation panel, navigate to Account Management.
2. Click Roles to see a list of your user roles.

3. Click the pencil icon next to the user role that you want to update.
4. Click Payment Configuration Permission.

5. Select the relevant permission for the specific user role you are editing. You can choose from
these Unified Checkout permissions:

o Unified Checkout View
o Unified Checkout Manage
o Unified Checkout Portfolio View (available for portfolio users only)

o Unified Checkout Portfolio Manage (available for portfolio users only)

Important: If all permissions are left unselected, the user has restricted permission. A
no access message appears when the user tries to access the Unified Checkout digital
product enablement pages. The user is advised to contact a customer representative.

If a portfolio user has view permissions and does not have a management role, they

can access the Unified Checkout pages, but they cannot modify toggles for different
digital payments.

Digital Accept Secure Integration | Unified Checkout | 105

Unified Checkout Ul

Completing a payment with Unified Checkout requires the customer to navigate through a sequence
of interfaces. This section includes examples of the interfaces your customers can expect when
completing a payment with these payment methods on Unified Checkout:

* Click to Pay UI (on page 107)
* Google Pay UI (on page 109)
» Manual Payment Entry Ul (on page 110)
» Pay with Bank Account Ul (on page 114)

* Paze Ul (on page 121)

Digital Accept Secure Integration | Unified Checkout | 106

Click to Pay Ul

These screen captures show the sequence of events your customer can expect when completing a
payment with Click to Pay.

Digital Accept Secure Integration | Unified Checkout | 107

Click to Pay Ul

941 all -

& visa.com

Order Summary

Subtotal (2 items) $116.00
Shipping 0,00
Estimated tax (98074) $10.00
Order Total $126.00

Checkout with card

v EEe D =

Click to Pay loader animation

941 all F -

& visa.com

Order Summary

subtotal (2 tems) $116.00
Shipping £0.00
Esumated tax (HE074) $10.00
Order Total $126.00

Checkout with card

& Click to Pay has faund your linked cards (2]

v g BEED e 0 =

Click to Pay recognized user

ﬁ Secure dhackout x

& Contact Details

Jjehn.doefemail.com Edit
(425) 242 - 4242

© Payment Details [» |5

© M wisa o
o BB wisa 000

Wora cards

Pay with selected card

Lise & different card
@ Shipping Details

'@ Review and Confirm

ﬂ Secire chegkout x

& Contact Details

Jjehn.doefemail.com Edit
(425) 2424242

Q Payment Details C# (8
VISA +3342, Exp 06/29 Switch Card

1903 Frontier Rd
Austin, TH 78636

© shipping Details
ﬂ £ame as billing address

John Doe
19032 Frontier Rd
Austin, TH TEG36

Continue

@ Review and Confirm

ﬁ Sacure dheckoit

& Contact Details

Jjohn.doe@email.com
(425) 2424242

@& payment Details (|5
VISA 8342, Exp 06/28

1903 Frontier Rd
Austin, T 78636

0 Shipping Details
John Doe
1903 Frontier Rd
Austin, TH 78636

@ Rreview and Confirm

Please review and confirm your payment
information before you continue.

Edit

Switch Card

Edit

Click to Pay saved cards

Click to Pay saved cards

Digital Accept Secure Integration | Unified Checkout | 108

Review screen

Google Pay Ul

These screen captures show the sequence of events your customer can expect when completing a
payment with Google Pay.

Google Pay Ul

9:41 wll T - 10:01 wl T
- Teams
& visa.com pay.google.com]
-~
G Pa
Order Summary Y
Subtotal (2 items) $116.00 Complete your purchase
ﬁ google@gmail.com >
Shipping $0.00

PAYMENT METHOD

New America «+++ 4444
Estimated tax (98074) $10.00 VISA 1222388 N Pennsylvania Ave, Oklahoma City »

(122) 222-0000

Order Total $126.00 SHiPFING
Subha Pandya
122288 N Pennsylvania Ave, b
Cklahoma City, OK 72019, United States
Buy with G Pay +1122-222-0000
Pay Unified Checkout Merchant $21.01

Pay with bank account

Continue

B |» Checkout with card

€ Cdlick to Pay has found your linked cards (2)

viss @ B2 @3 @ 30 =

L

Google Pay in the payment method list Google Pay checkout

Digital Accept Secure Integration | Unified Checkout | 109

Manual Payment Entry Ul

These screen captures show the sequence of events your customer can expect when completing a
payment by manually entering payment, shipping, and contact information.

Manual Entry Payment Details

B O 8 /Y oooge ' @ pibbble '
E > C fi | & P

[click to Pay | card look up

o Payment Details

Card details

Card number

l4‘|11—‘|‘|‘|‘|—1‘|‘|‘l—111'| VISAI
Expiry Security code
06 ~ |/ 26 v l924]

Billing address

First name Last name
l Kimni l [Raikkonen l
Address

Address 2

City

State

Zip code

Country

‘ United States v

Continue

@ Shipping Details

@ Contact Details

@ Review & Confirm

Digital Accept Secure Integration | Unified Checkout | 110

X

l 1903 Frontier Rd l
l Austin l
‘Texas ~ ‘

l 78636 l

Manual Entry Shipping Details

B O 6 /Hocooge @ bibbble 3
E>C ff & Q=

E» Click to Pay | Card look up X

Q Payment Details

VISA +++9342, Exp 06/29 Edit card

1903 Frontier Rd Edit address
Austin, TX 78636

o Shipping Details

Same as billing address

First name Last name
l Kimi l l Raikkonen l
Address

l 1903 Frontier Rd l

Address 2

| |

City

Austin l

State

‘ Texas v ‘

Zip code

l 78636 l

Country

‘ United States v ‘

Continue

@ Contact Details

@ Review & Confirm

Digital Accept Secure Integration | Unified Checkout | 111

Manual Entry Contact Details

'/ B coogle ' @ pibbble

cCH A

C» Click to Pay | Card look up

Q Payment Details

VISA #9342, Exp 06/29 Edi

1903 Frontier Rd Edit ac
Austin, TX 78636

Q Contact Details

Kimi Raikkonen
1903 Frontier Rd
Austin, TX 78636

e Contact Details

Email address

l kimi.raikkonen@gmail.com

Phone number

‘ (425) 242-4242

Continue

@ Review & Confirm

Digital Accept Secure Integration | Unified Checkout | 112

Manual Entry Review and Confirm

'/ B coogle ' @ pibbble
Cf &

C» Click to Pay | Card look up

Q Payment Details

VISA #9342, Exp 06/29 Edi

1903 Frontier Rd Edit ac
Austin, TX 78636

Q Contact Details

Kimi Raikkonen
1903 Frontier Rd
Austin, TX 78636

Q Contact Details

kimi.raikkonen@gmail.com
(425) 242-4242

o Review & Confirm

Please review and confirm your payment
information before you continue.

D E}» Save my info above for faster
checkout with Click to Pay

By continuing, you agree to the Terms for
Click to Pay and understand your data will be
processed according to the Privacy Notice.

Digital Accept Secure Integration | Unified Checkout | 113

Pay with Bank Account Ul

These screen captures show the sequence of events your customer can expect when completing a
payment with a bank account.

Pay with Bank Account Order Summary
8 O 6 /Hcoogle { @ pibbble
-3 C a0 o

County Utility Bill Payment

Order number #12345
August-Sep water charges Due: $300.00 Order Summary
Account Number / Service Address: N
400-32901.72 Subtotal (2 items) $520.00
956 N 238TH PL
Remove Late fees $5.00
Estimated tax (98074) $40.00
August sewer charges Due: $220.00
Account Number / Service Address:
e Order Total $565.00
956 N 238TH PL
Remove
[poze }
[Pay with @Pay]

Buy with & Pay

Checkout With Card

vee @0 BEED @ [=

Pay with bank account

Digital Accept Secure Integration | Unified Checkout | 114

Pay with Bank Account Checkout

B 08 /Ecoogle ' @ pibbble
c > C fi & &) =

ﬁ Secure checkout X

o Pay with Bank Account

Bank account details

Account Type

| ~ |

Routing Number @

Account Number @
Confirm Account Number

| |

Billing address

First Name

| |

Last Name

| |

Country

UsA

Address

| |

Apartment, suite, floor etc

| |

City

State

Zip Code

Continue

() contact

(email & phone)

@ Review & Confirm

{confirm your payment infermation)

Digital Accept Secure Integration | Unified Checkout | 115

Pay with Bank Account Checking Account
B 08 /Ecoogle ' @ pibbble
->CcH A o
() secure checkout >

o Pay with Bank Account

Bank account details

Account Type

| ~
Checking
Savings

Corporate Checking

Account Number @
Confirm Account Number

| |

Billing address

First Name

| |

Last Name

| |

Country

UsA

Address

| |

Apartment, suite, floor etc

| |

City

State

Zip Code

Continue

@ Contact

(email & phone)

@ Review & Confirm

(confirm your payment information)

Digital Accept Secure Integration | Unified Checkout | 116

Pay with Bank Account Routing Number

B 08 /Ecoogle ' @ pibbble
> C fi & &) =

2y secure checkout X

o Pay with Bank Account

Bank account details

Account Type

| Checking v

Routing Number @
[1

Routing number is 9 digits long and can be X
found on your bank statement, mabile app
account details. Also, you can find it on your
physical check in the bottom-left corner as
shown below:

‘ H02kedL5ET DDLEEILSE?L" 2L 3

Routing Number Account Number

Billing address

First Name

| |

Last Name

| |

Country

UsA

Address

Apartment, suite, floor etc

| |

City
State
| v
Zip Code
@ Contact

(email & phone)

@ Review & Confirm

(confirm your payment information)

Digital Accept Secure Integration | Unified Checkout | 117

Pay with Bank Account Contact Details

B O8 Boonge ' @ pibbble \
- >C fi | & o=
ﬂ Secure checkout X
Q Pay with Bank Account Edit

Checking Account

Routing number 021234567
Account number ...4567
Alex Miller

10071 Nerth Point Street
San Francisco, CA 94501

o Contact

Contact Details

Email Address

Phone Number

@ Review & Confirm

(confirm your payment information)

Digital Accept Secure Integration | Unified Checkout | 118

Pay with Bank Account Review and Confirm

B O8 Boonge ' @ pibbble \
e >C #i & O =
ﬂ Secure checkout X
Q Pay with Bank Account Edit

Checking Account
Routing number 021234567
Account number ...4567

Alex Miller
1001 North Point Street
San Francisco, CA 94501

Q Ship To & Contact Edit

alexmiller@example.com
(425) 242 - 4242

e Review & confirm

| authorize my payment to be
processed as an electronic funds
transfer or draft drawn from my
account. See more

Digital Accept Secure Integration | Unified Checkout | 119

Pay with Bank Account Review and Confirm Disclaimer

888/ H coogle @ pibbble i
> C M8 al=
ﬂ Secure checkout X
o Pay with Bank Account Edit

Checking Account
Routing number 021234567
Account number ...4567

Alex Miller
10071 Nerth Point Street
San Francisco, CA 94501

0 Ship To & Contact Edit

alexmiller@example.com
(425) 242 - 4242

e Review & confirm

| authorize my payment to be
processed as an electronic funds
transfer or draft drawn from my
account. If the payment is returned
unpaid, | authorize you or your
service provider to collect the
payment and my state's return item
fee by electronic funds transfer(s) or
draft(s) drawn from my account.
Click here to view your state's
returned item fee. If this payment is
from a corporate account, | make
these authorizations as an
authorized corporate representative
and agree that the entity will be
bound by the NACHA operating
rules.

TeleCheck Returned Check Fees

See less

Digital Accept Secure Integration | Unified Checkout | 120

Paze Ul

These screen captures show the sequence of events your customer can expect when completing a
payment with Paze.

Digital Accept Secure Integration | Unified Checkout | 121

Merchant Logo

BryansBikes

450 Bellevue Square, Bellevue, WA 98004
425-454-8096

Enter your email

Get offers delivered directly to your inbox...

bryan@visa.com

’ Continue

Collecting an email for Paze lookup

[O N J Paze

@& sandbox.digitalwallet.earlywarning.com/web/otp?...

e po ze'“ BryansBikes

Subtotal $100.95

Confirmit's you.

Enter the security code sent to the number
ending in 6749 to confirm it's you.

Didn't receive a code? Send a new code.

Exit Paze and return to BryansBikes

Optout

Paze one-time password

Paze Ul

Merchant Logo

BryansBikes

450 Bellevue Square, Bellevue, WA 98004
425-454-8096

A1 Helmet w/MIPS Classic

This lightweight, fully encapsulated helmet
maximum coverage and dimension to keep you
safe and protected in all riding conditions.

Price: Enter Qty.:

Max 10

Total $100.95

B3 Checkout with card

v @EE e 5 =

Paze in the payment method list

[N J Paze

@ sandbox.digitalwallet.earlywarning.com/web/conf...

pa Ze‘“ BryansBikes

Subtotal $100.95

Payment v
Your Bank
weee $568
visa
Shipping v
Kalpesh Vaidya

901 Metro Center Blvd
Foster City, CA 94404, United States

Contact

kalpesh@paze.com

Confirm details (]

Exit Paze and return to BryansBikes

poze

Check out at
BryansBikes with
Paze, a new digital
wallet offered by
your bank or credit
union.

Get started with a one-time SMS code to
access your eligible cards from a single wallet.
No entering full card numbers. No new
username or password. Always up-to-date
payment.

TRUIST

[Bbank g|gn® cHAsEO @PNC

Continue with Paze

Exit Paze and return to BryansBikes

Privacy Notice | Optout

Paze explainer

9:41 ol T @@
@ PaybyLink.com

@ Success! thank you for your payment. X

Paze payment method selection

Merchant Logo

BryansBikes

450 Bellevue Square, Bellevue, WA 98004
425-454-8096

A1 Helmet w/MIPS Classic

This lightweight, fully encapsulated helmet maximum
coverage and dimension to keep you safe and
protected in all riding conditions.

$50.00 x 2 $100.95
Total $100.95
Transaction date 02/02/2023 at 11:20 AM PST
Transaction ID A68890-20
Auth code A12234
Payment method VISA **** 6568

Billing address
901 Metro Center Blvd
Foster City, CA 94404

Shipping address
Kalpesh Vaidya

901 Metro Center Blvd
Foster City, CA 94404

Paze payment confirmation

Digital Accept Secure Integration | Unified Checkout | 122

JSON Web Tokens

JSON Web Tokens (JWTs) are digitally signed JSON objects based on the open standard RFC 7519.
These tokens provide a compact, self-contained method for securely transmitting information
between parties. These tokens are signed with an RSA-encoded public/private key pair. The
signature is calculated using the header and body, which enables the receiver to validate that the
content has not been tampered with. Token-based applications are best for applications that use
browser and mobile clients.

A JWT takes the form of a string, consisting of three parts separated by dots:

* Header
* Payload

« Signature

This example shows a JWT:

XXXXX.YYYYY.Z22222

Digital Accept Secure Integration | Unified Checkout | 123

https://datatracker.ietf.org/doc/html/rfc7519

Supported Countries for Digital Payments

Apple Pay, Click to Pay, and Google Pay are supported in different countries. See these topics for the

lists of the countries that support digital payments:

* Supported Countries for Digital Payments A-D (on page 124)

* Supported Countries for Digital Payments E-K (on page 126)

* Supported Countries for Digital Payments L-R (on page 129)

* Supported Countries for Digital Payments S-Z (on page 132)

Supported Countries for Digital Payments A-D

Supported Countries (A through D)

Country

Afghanistan
Albania
Algeria
Andorra
Angola
Antigua and Barbuda
Argentina
Armenia
Australia
Austria
Azerbaijan
Bahamas
Bahrain

Bangladesh

Apple Pay

Click to Pay Google Pay

Digital Accept Secure Integration | Unified Checkout | 124

Supported Countries (A through D) (continued)

Country Apple Pay Click to Pay Google Pay

Barbados

Belarus

Belgium

Brazil

Belize

Benin

Bhutan

Bolivia

Bosnia and
Herzegovina

Botswana

Brunei Darussalam

Bulgaria

Burkina Faso

Burundi

Cambodia

Cameroon

Canada

Cape Verde

Central African
Republic

Chad

Chile

China

Digital Accept Secure Integration | Unified Checkout | 125

Supported Countries (A through D) (continued)

Country Apple Pay Click to Pay Google Pay

Colombia

Comoros

Costa Rica

Cote d'lvoire

Croatia

Cyprus

Czech Republic

Democratic Republic of
the Congo

Denmark

Djibouti

Dominica

Dominican Republic

Supported Countries for Digital Payments E-K

Supported Countries (E through K)

Country Apple Pay Click to Pay Google Pay

Ecuador

Egypt

El Salvador

Equatorial Guinea

Eritrea

Estonia

Eswatini

Digital Accept Secure Integration | Unified Checkout | 126

Supported Countries (E through K) (continued)

Country Apple Pay Click to Pay Google Pay
Ethiopia (] ([] (]
Faroe Islands (] (] (]
® @ ©
Finland (V] (] (]
France o (] (]
Gabon (] (] o
Gambia (] (] (]
Georgia (] o (]
Germany (V] (] (]
Ghana (] ([] (]
Gibraltar (] (] (]
Greece (] (] (]
Greenland (V] ([] ([]
Guernsey o ([] ([]
Grenada (] (] o
Guatemala (] (] (]
Guinea (] (] (]
Guinea-Bissau ([] ([] (]
Guyana (] ([] (]
Haiti (] (] o
Honduras (] (] (]
Hong Kong (V] (] (]
Hungary (V] (V] ()

Digital Accept Secure Integration | Unified Checkout | 127

Supported Countries (E through K) (continued)

Country Apple Pay Click to Pay Google Pay
Iceland o ([] (]
India [x) (/) (/)
Indonesia (] (] (]
Iraq (> © o
Ireland o (] (]
Isle of Man (] (] (]
Israel (] (] (]
Italy (] (] (]
Jamaica ° ° Q
japan © o ©
jersy © @ @
Jordan (] (] (]
Kazakhstan (V] ([] (]
Kenya [] [] (]
Kiribati (] (] o
Kuwait (] (] (]
Kyrgyzstan (] (] (]

Digital Accept Secure Integration | Unified Checkout | 128

Supported Countries for Digital Payments L-R

Supported Countries (L through R)

Country Apple Pay Click to Pay Google Pay

Laos ([] [x) o
Latvia o [x]]
Lebanon (] [x) o
Lesotho (] [x) ()
Liberia ([] [x) ()
Libya (] © (/]
Liechtenstein (] (x] o
Lithuania (] (% o
Luxembourg (V] (x] o
Macau (V] [x) o
Madagascar (] [x) o
Malawi (] (x]]
Malaysia (] (/] o
Maldives (] [x) ()
Mali (] [x]]
Malta o [x]]
Marshall Islands (] [x) o
Mauritania (] [x) ()
Mauritius ([] [x) ()
Mexico o o o
Micronesia, Federated (] (] (/]
States of

Moldova (] (% o

Digital Accept Secure Integration | Unified Checkout | 129

Supported Countries (L through R) (continued)

Country Apple Pay Click to Pay Google Pay

Monaco

Mongolia

Montenegro

Morocco

Mozambique

Myanmar

Namibia

Nauru

Nepal

Netherlands

New Zealand

Nicaragua

Niger

Nigeria

North Macedonia

Norway

Oman

Pakistan

Palau

Palestinian Territories

Panama

Papua New Guinea

Paraguay

Digital Accept Secure Integration | Unified Checkout | 130

Supported Countries (L through R) (continued)

Country Apple Pay Click to Pay Google Pay
@ @ @
Philippines (] (] (]
Poland (/] (/) (/)
Portugal (] ([] (]
Qutr @ @ @
Republic of the Congo (] (] o
Romania (] (] (]
Rwanda (] o (]

Digital Accept Secure Integration | Unified Checkout | 131

Supported Countries for Digital Payments S-Z

Supported Countries (S through Z)

Country Apple Pay Click to Pay Google Pay

Saint Kitts and Nevis

Saint Lucia

Saint Vincent and the
Grenadines

Samoa

San Marino

Sao Tome and Principe

Saudi Arabia

Senegal

Serbia

Seychelles

Sierra Leone

Singapore

Slovakia

Slovenia

Solomon Islands

Somalia

South Africa

Korea, Republic of
(South)

South Sudan

Spain

Sri Lanka

Digital Accept Secure Integration | Unified Checkout | 132

Supported Countries (S through Z) (continued)

Country Apple Pay Click to Pay Google Pay

Sudan

Suriname

Sweden

Switzerland

Switzerland -Italian

Taiwan

Tajikistan

Tanzania

Thailand

Timor-Leste

Togo

Tonga

Trinidad and Tobago

Tunisia

Turkey

Turkmenistan

Tuvalu

Uganda

Ukraine

United Arab Emirates

United Kingdom

United States

Uruguay

Digital Accept Secure Integration | Unified Checkout | 133

Supported Countries (S through Z) (continued)

Country Apple Pay Click to Pay Google Pay
Uzbekistan (] ([] (]
Vanuatu [x) [x) (/)
Vatican City (Holy See) (V] (] (]
Venezuela (] ([] (]
Vietnam o ([] (]
Yemen [] [] (]
Zambia (] (] (]
Zimbabwe (] (] (]

Digital Accept Secure Integration | Unified Checkout | 134

Supported Locales

The locale field within the capture context request consists of an ISO 639 language code, an
underscore (_), and an [SO 3166 region code. The locale controls the language in which the
application is rendered. The following locales are supported:

e ar_AE

» ca_ES

*cs_CZ

» da_DK
» de_AT
» de_DE
*el_GR

* en_AU
* en_CA
* en_GB
*en_[E

*en_NZ
*en_US
*es_AR
* es_CL

*es_CO
* es_ES

* es_MX
*es_PE

* es_US

* fi_FI

* fr CA

» fr FR

Digital Accept Secure Integration | Unified Checkout | 135

* he IL
« hr HR
* hu_HU
id_ID

« it IT

*ja P
 km_KH
* ko_KR
*]lo LA
*ms_MY
*nb_NO
*nl_ NL
* pl_PL
* pt BR
* ru_RU
» sk_SK
*sv_SE
» th_TH
 tI_PH

* tr_TR
*vi_VN
* zh_CN
zh HK
* zh MO
* zh_SG

e zh TW

Digital Accept Secure Integration | Unified Checkout | 136

Reason Codes
A Unified Checkout request response returns one of the following reason codes:

Reason Codes
Reason Code Description

200 Successful response.
201 Capture context created.
400

Bad request.
Possible reason values:

* CAPTURE_CONTEXT_EXPIRED

* CAPTURE_CONTEXT_INVALID

* CREATE_TOKEN_TIMEOUT

* CREATE_TOKEN_XHR_ERROR

* INVALID_APIKEY

* SDK_XHR_ERROR

* SHOW_LOAD_CONTAINER_SELECTOR

* SHOW_LOAD_INVALID_ CONTAINER

* SHOW_PAYMENT_TIMEOUT

* SHOW_TOKEN_TIMEOUT

* SHOW_TOKEN_XHR_ERROR

* UNIFIEDPAYMENT PAYMENT PARAMITERS
* UNIFIEDPAYMENTS_VALIDATION_ FIELDS

* UNIFIEDPAYMENTS_VALIDATION_PARAMS

404
The specified resource not found in the system.

500
Unexpected server error.

Digital Accept Secure Integration | Unified Checkout | 137

Click to Pay Drop-In Ul

The Click to Pay Drop-In Ul powered by Unified Checkout provides an interface for easy acceptance
of Click to Pay payments from Visa, Mastercard, and American Express cards. Throughout this guide
we refer to both Click to Pay Drop-In Ul and Unified Checkout.

Click to Pay Drop-In Ul consists of a server-side component and a client-side JavaScript library.

The server-side component authenticates your merchant identity and instructs the system to act
within your payment environment. The response contains limited-use public keys. The keys are
used for end-to-end encryption and contain merchant-specific payment information that drives the
interaction of the application. The client-side JavaScript library dynamically and securely places
digital payment options into your e-commerce page.

The provided JavaScript library enables you to place a payment application within your e-commerce
environment. This embedded component offers Click to Pay and card entry to your customers.

Whether a customer uses a stored Click to Pay card or enters their payment information manually,
the Click to Pay Drop-In Ul handles all user interactions and provides a response to your e-commerce

system.

The figure below shows the Click to Pay Drop-In Ul for a recognized user.

Digital Accept Secure Integration | Click to Pay Drop-In Ul | 138

8 style.com

Order Summary

Subtotal (2 items) $116.00

Shipping i —— Your checkout page’'s UX

Estimated tax (98074)

Order Total $126.00

B3 |C» Checkout with card

— The Click to Pay Drop-in Ul

& Click to Pay has found your linked cards (2)

vse @0 HE @ @ XD =

Click to Pay Customer Workflows

This section provides an overview of the Click to Pay Drop-In Ul user experience. The Click to Pay
Drop-In Ul is designed to provide customers with a friction-free payment experience across many
payment experiences. The user experience has been optimized for mobile use and performs equally
well on mobile and desktop devices. Click to Pay recognizes customers as follows:

* The customer is a recognized Click to Pay customer.
* The customer is not recognized but is a Click to Pay customer.

* The customer is a guest at checkout.

These workflows show you the pages a customer encounters based on their status:

Digital Accept Secure Integration | Click to Pay Drop-In Ul | 139

* Recognized Click to Pay Customer (on page 140)
* Unrecognized Click to Pay Customer (on page 142)

* Guest Customer (on page 144)

Recognized Click to Pay Customer

This section provides an overview of the Click to Pay Drop-In Ul recognized experience. This
interaction occurs when a customer’s device is recognized by the Click to Pay Drop-In Ul

A customer's device is recognized under these conditions:

* When the customer has used Click to Pay on their device through any Click to Pay channel.

« If the customer chose to have their device remembered during a previous transaction.

Digital Accept Secure Integration | Click to Pay Drop-In Ul | 140

Recognized Click to Pay Customer

9:41

Subtotal (2 items)

Shipping

@ visa.com

Order Summary

Estimated tax (98074)

Order Total

B3| Checkout with card

wil S . 9:41 il F .
@ visa.com
Order Summary
$116.00 Subtotal (2 items) $116.00
$0.00 Shipping $0.00
$10.00 Estimated tax (98074) $10.00
$126.00 Order Total $126.00

B3/ Checkout with card

Q Click to Pay has found your linked cards (2)

v @ IEED e I3 =

Click to Pay loader animation

Click to Pay recognized user

ﬁ Secure checkout X

Q Contact Details

john.doe@email.com Edit
(425) 242 - 4242

© Payment Details [|5

® VISA ... 9342
0 :y‘ VISA ... 9010

More cards

Pay with selected card

Use a different card
@ Shipping Details

@ Review and Confirm

ﬁ Secure checkout X

Q Contact Details

john.doe@email.com Edit
(425) 242-4242

@ Payment Details [y |8
VISA 9342, Exp06/29 Switch Card

1903 Frontier Rd
Austin, TX 78636

e Shipping Details
Same as billing address

John Doe
1903 Frontier Rd
Austin, TX 78636

@ Review and Confirm

ﬂ Secure checkout

Q Contact Details

john.doe@email.com
(425) 242-4242

& Payment Details [|8
VISA 9342, Exp 06/29

1903 Frontier Rd
Austin, TX 78636

& shipping Details
John Doe
1903 Frontier Rd
Austin, TX 78636

o Review and Confirm

Please review and confirm your payment
information before you continue.

Edit

Switch Card

Edit

Click to Pay saved cards

Click to Pay savelf HHas"\ccep

Secure Tntegraigia | SURielp Pay Drop-In Ul | 141

Unrecognized Click to Pay Customer

This section provides an overview of the Click to Pay Drop-In UI unrecognized experience. This
interaction occurs when a customer's device is not recognized by the Click to Pay Drop-In UL This
condition occurs when the customer has a Click to Pay account but has not used it on their device

previously.

Digital Accept Secure Integration | Click to Pay Drop-In Ul | 142

Unrecognized Click to Pay Customer

941 e 941 T - € secure checkout X
@ visa.com & visa.com o Contact Details
Email address
Order Summary Order Summary K)
john.doe@email.com
Subtotal (2 items) $116.00 Subtotal (2 items) $116.00
Phone number
Shipping $0.00 Shipping $0.00 [(425) 242-4242 1
) ccktoPaywiltusethisinformationto
Estimated tax (98074) $10.00 Estimated tax (98074) $10.00

check f you have saved cards. A one-time
passcode may be sent to confirm t's you.
Message and data rates may apply. Whatis

Order Total $126.00 Order Total $126.00 Click to Pay?

Continue
B/0» Checkor th car B[C» Checkout with card
| kout with card ‘ wi

vs @0 EEED @ £ =-

@ Payment Details
va @ EEED ®

@ Shipping Details

@ Review and Confirm

Click to Pay loader animation Click to Pay unrecognized user Identity lookup based on
email provided

() secure checkout X () secure checkout X () secure checkout X) secure checkout X
Q Contact Details Q Contact Details Q Contact Details Q Contact Details
kimi.raikkonen@gmail.com Edit john.doe@email.com Edit Jjohn.doe@email.com Edit john.doe@email.com Edit
(425) 242 - 4242 (425) 242 - 4242 (425) 242-4242 (425) 242-4242
© Payment Details [|5 © Payment Details [|8 & Payment Details LY |8 & Payment Details LY |8
Click to Pay has found your saved cards VISA ++9342, Exp 06/29 Switch Card VISA +9342, Exp 06/29 Switch Card
To access your cards, enter the code sent to m
(s+2)+++- 4242 to confirm it's you ® VISA ...9342 1903 Frontier Rd 1903 Frontier Rd
Resend code P Austin, TX 78636 Austin, TX 78636
O VISA ... 9010
More cards © shipping Details @ shipping Details
Skip verification next time | shop at Style.com John Doe Edit

Same as billing address 1903 Frontier Rd
Pay with selected card John Doe Austin, TX 78636

1903 Frontier Rd

Use a different card Austin, TX 78636 o Review and Confirm

. Please review and confirm your payment
Continue . "
information before you continue.
@ Review and Confirm

Use a different card

@ Shipping Details @ Shipping Details

@ Review and Confirm @ Review and Confirm

One-time password Click to Pay saved cards Click to Pay saved cards Review screen

Digital Accept Secure Integration | Click to Pay Drop-In Ul | 143

Guest Customer
This section provides an overview of the Click to Pay Drop-In Ul guest experience. This interaction

occurs when the customer has not created a Click to Pay account, or their issuer has not provisioned
their card into Click to Pay.

Digital Accept Secure Integration | Click to Pay Drop-In Ul | 144

Guest Customer

9:41 all 7 =m

@ visa.com

Order Summary

9:41 all ¥ ==

@ visa.com

Order Summary

ﬁ Secure checkout

o Contact Details

Email address

ljohn.doe@emai].com

Subtotal (2 items) $116.00 Subtotal (2 items) $116.00
,, Phone number
Shipping $0.00 Shipping $0.00 [(425) 242-4242
» Click to Pay will use this information to
Estimated tax (98074) $10.00 Estimated tax (98074) $10.00 checkif you have saved cards. A one-time
passcode may be sent to confirmit's you.
Message and data rates may apply. What is
Order Total $126.00 Order Total $126.00 Click to Pay?

@ Payment Details

B0 checkout with card B3| Checkout with card

visa @ EEED @ 550 =

@ Shipping Details

@ Review and Confirm

Identity lookup based on

Click to Pay loader animation 0 !
email provided

Click to Pay recognized user

ﬁ Secure checkout X ﬁ Secure checkout X
Q Contact Details Edit Q Contact Details
kimi.raikkonen@gmail.com kimi.raikkonen@gmail.com Edit
(425) 242 - 4242 (425) 242-4242

© Payment Details [»|S @ Payment Details [|5

@ We didn't find any saved Click to Pay VISA +++9342, Exp 06/29 Edit card

cards for that information.
Try a different email?

1903 Frontier Rd Edit address

Austin, TX 78636
Card details
Q Shipping Details

Card number

Kimi Raikkonen Edit
\ B ‘ 1903 Frontier Rd
Austin, TX 78636
Expiry Security code
MM v/ vy v . .
’ ’ ! ‘ ° Review and Confirm

Please review and confirm your payment

Billing address information before you continue

First name Last name

| [|

Address By continuing, you agree to the Terms for
Click to Pay and understand your data will be
processed according to the Privacy Notice.

Address 2
[] Complete Purchase

City Digital Accept Secure Integration|| Click to Pay Drop-In Ul | 145

Save my info above for faster
v
. D» checkout with Click to Pay

Click to Pay Drop-In Ul Flow

To integrate Unified Checkout into your platform, you must follow several integration steps. This
section gives a high-level overview of how to integrate and launch Unified Checkout on your webpage
and process a transaction using the data that Unified Checkout collects for you. You can find the
detailed specifications of the APIs later in this document.

1. You send a server-to-server API request for a capture context. This request is fully
authenticated and returns a JSON Web Token (JWT) that is necessary to invoke the frontend
JavaScript library. For information on setting up the server side, see Server-Side Set Up (on
page 149).

2. You invoke the Unified Checkout JavaScript library using the JWT response from the capture
context request. For information on setting up the client side, see Client-Side Set Up (on page

81).

3. You use the response from the Click to Pay Drop-In Ul to retrieve payment credentials for
payment processing or other steps.

The figure below illustrates the system's payment flow.

Digital Accept Secure Integration | Click to Pay Drop-In Ul | 146

Click to Pay Payment Flow

Y B B2 B

Customer Merchant Merchant Order Accept.js UP Portal
Website Management System
()
Customer Get
— enters —— authentication —
website capture context G
—— Generate capture context (parameters)—> e"terate
capture
&———— Response (capture context) context
«— Capture context—
(. J
(1\
Load
(:l CYBSaccept.js
Initiate ACCEPT.js (capture context) ——>
&—————Response (accept object)——— @

Initiate Unified
——Initate accept.unifiedpayments (options)—> Checkout

«——Response (unified payments object) JavaScript SDK

unifiedpayments.show (options) ———>

Customer Unified
— selects payments
payment is shown
type
yp &———Response (transient token)———
(. J

Get credentials

(TTID)
Get credentials (TTID) ————>
Response
é—————— (Shipping, ——— @
name, contact)
payment data&} Retrieve
Response :l Decryption payment

<«—— (Shipping, information

name, contact)

Display payment
(:lselection summary

L J

Customer
—— finalizes ———

order X
Authorize

transaction

For more information on the specific APIs referenced, see these topics:

* Capture Context API (on page 156)
» Payment Details API (on page 97)

» Payment Credentials API (on page 167)

Digital Accept Secure Integration | Click to Pay Drop-In Ul | 147

Enabling Unified Checkout in the Business Center

To begin using the Click to Pay Drop-In Ul powered by Unified Checkout, you must first ensure that
your merchant ID (MID) is configured to use the service and that Click to Pay is properly set up.

1. Log in to the Business Center:
Test URL: https://businesscentertest.cybersource.com/ebc2
Production URL: https://businesscenter.cybersource.com

2. In the Business Center, go to the left navigation panel and choose Payment Configuration >
Unified Checkout.

3. Click Setup and follow the instructions to enroll your business in Click to Pay. When Click to
Pay is enabled, it appears on the payment configuration page.

Payment Configuration

Unified Checkout

Digital Payment Solutions ENABLED

You have set up and enabled one or more digital payment solutions. You can
manage your payment solution enablement here. Set up additional services or
modify existing payment solutions configuration. These payment solutions are
available through the integrated Unified Checkout product. Easily enable digital
payment options for acceptance within your webpage.

o»

Manage

4. Click Manage to alter your Click to Pay enrollment details. For more information on registering
for Click to Pay, see Enable Click to Pay (on page 175).

Digital Accept Secure Integration | Click to Pay Drop-In Ul | 148

https://businesscentertest.cybersource.com/ebc2
https://businesscenter.cybersource.com

Server-Side Set Up

This section contains the information you need to set up your server. Initializing Unified Checkout
within your webpage begins with a server-to-server call to the sessions API. This step authenticates
your merchant credentials, and establishes how the Unified Checkout frontend components will
function. The sessions API request contains parameters that define how Unified Checkout performs.

The server-side component provides this information:

« A transaction-specific public key is used by the customer's browser to protect the transaction.

 An authenticated context description package that manages the payment experience on the
client side. It includes available payment options such as card networks, payment interface
styling, and interaction methods.

The functions are compiled in a JSON Web Token (JWT) object referred to as the capture context. For
information JSON Web Tokens, see JSON Web Tokens (on page 123).

Capture Context
The capture context request is a signed JSON Web Token (JWT) that includes all of the merchant-
specific parameters. This request tells the frontend JavaScript library how to behave within your

payment experience. For information on JSON Web Tokens, see JSON Web Tokens (on page 123).

You can define the payment cards and digital payments that you want to accept in the capture
context. Use the allowedCardNetworks field to define the card types.

Available card networks for card entry:

* American Express
* Diners Club

* Discover

*JCB

* Mastercard

 Visa

! Important: Click to Pay supports American Express, Mastercard, and Visa for saved cards.
Use the allowedPaymentTypes field to define the digital payment methods.

Digital Accept Secure Integration | Click to Pay Drop-In Ul | 149

Example:

{
"targetOrigins" : ["https://ww.test.com],
“clientVersion" : "0.19",
"al | onedCar dNet wor ks" : ["VISA", "MASTERCARD', "AMEX'],
"al | onedPaynent Types" : ["CLI CKTOPAY"],
"country" : "US",
"l ocale" : "en_ US",
"captureMandate" : {
"billingType" : "FULL",
"request Emai | " : true,
"request Phone" : true,

"request Shi ppi ng" : true,

"shi pToCountries" : ["US', "GB"],
"showAccept edNet wor kl cons" : true
s

"“orderInformation" : {

"anmount Detai | s" : {

“total Aopunt" : "1.01",
"currency" : "USD'

s

}

}

This diagram shows how elements of the capture context request appear in the card entry form.

Digital Accept Secure Integration | Click to Pay Drop-In Ul | 150

{

“targetOrigins” : ["https://the-up-demo.appspot.com"],
“clientVersion” : "019",
“allowedCardNetworks"
"allowedPaymentTypes” :
“country” : "US",
"locale” : "en_US",
“captureMandate” : {
“billingType" : "FULL",

"CLICKTOPAY"],

“requestShipping” : true,
"shipToCountries” : ["US", "GB"],
"showAcceptedNetworkicons” : true

L
“orderinformation” : {
"amountDetails" : {
“totalAmount" : "1.07",
“currency" : "USD"
)

"billTo" : {

“address1" : "277 Park Avenue’,
“administrativeArea” : "NY",
“buildingNumber" : "#218",
“country" : "US",

“district" : "district’,

“locality" : “New York",
“postalCode" : "10172",
“email" : “john.doe@visa.com’,
“firstName'

“lastName" :

“phoneNumber” : "1234567890",
“phoneType" : "phoneType"

“shipTo" : {
“address1" : *123 Cool St',
“administrativeArea” : "CA",
“buildingNumber" : *#12",

“postalCode" : "90210",
“firstName" : "Joe",
“lastName" : "Soap"

VISA", "MASTERCARD", "AMEX"],

Anatomy of a Manual Card Entry Form

) secure checkout

@ contact Details

Email address

l john.doe@visa.com

Phone number

i 1234567890

E») Click to Pay will use this information to
checkif you have saved cards. A one-time
passcode may be sent to confirmit's you.
Message and data rates may apply. What is
Clickto Pay?

Continue

@ Payment Details
® shipping Details

@ Review and Confirm

X

) secure checkout

@ Contact Details

john.doe@visa.com

1234567890

© Payment Details (|5

Card details

Card number

X @ secure checkout

Edit ° Contact Details
john.doe@visa.com
1234567890

@ Payment Details LY |8

VISA ++++9342, Exp 06/29

227 Park Avenue #218

|

=]

New York, NY 10172

Expiry

Security code

e Shipping Details

‘MM v ‘/ Yy

|

‘ (] same as billing address

Edit

Edit

First name Last name
ng address lJOG ‘ l Soap ‘

First name Last name

Address
[John l i Doe l

i 123 Cool St I
Address

Address 2
i 277 Park Avenue l

(12]
Address 2

City
i #218 l

i Beverly Hills l
City

State
i New York l

‘Cahforma X ‘
State

Zip code
l New York v l

[90210 ‘
Zip code

Country
i 10172 I

‘ USA X ‘
Country
‘ USA v

@ Shipping Details

@ Review and Confirm

‘

(@ Review and Confirm

) secure Checkout X
Q Contact Details Edit
john.doe@visa.com
1234567890

@& Payment Details Y165

VISA ****9342, Exp 06/29 Edit

227 Park Avenue #218
New York, NY 10172

Q Shipping details Edit
Joe Soap
123 Cool St #12
Beverly Hills, CA 90210

o Review & Confirm

Please review and confirm your payment
information before you continue.

save my info above for faster
v
B D oo pay

By continuing, you agree to the Terms for

Click to Pay and understand your data will be
processed according to the Privacy Notice.

Complete Purchase

For more information on requesting the capture context, see Capture Context API (on page 156).

Digital Accept Secure Integration | Click to Pay Drop-In Ul | 151

https://google.com

Client-Side Set Up

This section contains the information you need to set up the client side. You use the Unified Checkout
JavaScript library to integrate with your e-commerce website. It has two primary components:

* The button widget, which lists the payment methods available to the customer.

» The payment acceptance page, which captures payment information from the cardholder. You
can integrate the payment acceptance page with your webpage or add it as a sidebar.

The Unified Checkout JavaScript library supports Click to Pay and manual card entry payment
methods.

Follow these steps to set up the client:

1. Load the JavaScript library.

2. Initialize the accept object the capture context JWT. For information JSON Web Tokens, see
JSON Web Tokens (on page 123).

3. Initialize the unified payment object with optional parameters.

4. Show the button list or payment acceptance page or both.

The response to these interactions is a transient token that you use to retrieve the payment
information captured by the UI.

Loading the JavaScript Library and Invoking the Accept Function

Use the client library asset path returned by the capture context response to invoke Unified Checkout
on your page.

Get the JavaScript library URL dynamically from the capture context response. When decoded, it
appears in the JSON parameter clientLibrary as:

https://apitest.cybersource.com/up/vl/assets/x.y.z/SecureAcceptance.js

When you load the library, the capture context that you received from your initial server-side request
is used to invoke the accept function.

! Important: Use the clientLibrary parameter value in the capture context response to obtain
the Unified Checkout JavaScript library URL. This ensures that you are always using the most
up-to-date library. Do not hard-code the Unified Checkout JavaScript library URL.

Digital Accept Secure Integration | Click to Pay Drop-In Ul | 152

JavaScript Example: Initializing the SDK

<script
src="https://apitest.cybersource.com/up/vl/assets/0.19.0/SecureAcceptance.js"></script>
<script>
Accept('header.payload.signature').then(function(accept) {
// use accept object
1

</script>

In this example, header.payload.signature refers to the capture context JWT.

Adding the Payment Application and Payment Acceptance

After you initialize the Unified Checkout object, you can add the payment application and payment
acceptance pages to your webpage. You can attach the Unified Checkout embedded tool and payment
acceptance pages to any named element within your HTML. Typically, they are attached to explicit
named <div> components that are replaced with Click to Pay Drop-In Ul iframes.

Important: If you do not specify a location for the payment acceptance page, it is placed in
the sidebar.

JavaScript Example: Setting Up with Full Sidebar

var authForm = document.getElementById("authForm");
var transientToken = document.getElementById("transientToken");

var cc = document.getElementById("captureContext").value;
var showArgs = {
containers: {
paymentSelection: "#buttonPaymentListContainer"
}
¥
Accept(cc)
.then(function(accept) {
return accept.unifiedPayments();
)
.then(function(up) {
return up.show(showArgs);

)
.then(function(tt) {

Digital Accept Secure Integration | Click to Pay Drop-In Ul | 153

transientToken.value = tt;
authForm.submit();

})s

JavaScript Example: Setting Up with the Embedded Component

The main difference between using an embedded component and the sidebar is that the
accept.unifiedPayments object is set to false, and the location of the payment screen is passed in
the containers argument.

var authForm = document.getElementById("authForm");
var transientToken = document.getElementById("transientToken");

var cc = document.getElementById("captureContext").value;
var showArgs = {
containers: {
paymentSelection: "#buttonPaymentListContainer",
paymentScreen: "#embeddedPaymentContainer"

}
¥
Accept(cc)
.then(function(accept) {
// Gets the UC instance (e.g. what card brands I requested, any address information
I pre-filled etc.)
return accept.unifiedPayments();
)
.then(function(up) {
// Display the UC instance
return up.show(showArgs);
)
.then(function(tt) {
// Return transient token from UC's UI to our app
transientToken.value = tt;
authForm.submit();
}).catch(function(error) {
//merchant Llogic for handling issues
alert("something went wrong");

1)

Digital Accept Secure Integration | Click to Pay Drop-In Ul | 154

Transient Tokens

The response to a successful customer interaction with the Click to Pay Drop-In Ul is a transient
token. The transient token is a reference to the payment data collected on your behalf. Tokens enable
secure card payments without risking exposure to sensitive payment information. The transient
token is a short-term token with a duration of 15 minutes.

Transient Token Format

The transient token is issued as a JSON Web Token (JWT) (RFC 7519). For information on JSON Web
Tokens, see JSON Web Tokens (on page 123).

The payload portion of the token is a Base64-encoded JSON string and contains various claims. This
example shows a payload:

{
"iss" : "Flex/@0",
"exp" : 1706910242,
"type" : "gda-0.9.0",
"iat" : 1706909347,
"jti" : "1D1I202CSTMW3UIXOKEQFI40QX1L7CMSKDE3LJ8B5DVZ6WBIGKLQ65BD6222D426",
"content" : {
"orderInformation" : {
"billTo" : {

// Empty fields present within this node indicate which fields were captured by
// the application without exposing you to personally identifiable information
// directly.

¥
"amountDetails" : {
// Empty fields present within this node indicate which fields were captured by
// the application without exposing you to personally identifiable information
// directly.
¥
"shipTo" : {
// Empty fields present within this node indicate which fields were captured by
// the application without exposing you to personally identifiable information
// directly.
}
¥
"paymentInformation” : {
"card" : {
"expirationYear" : {
"value" : "2028"
¥
"number" : {
"maskedValue" : "XXXXXXXXXXXX1111",

Digital Accept Secure Integration | Click to Pay Drop-In Ul | 155

https://tools.ietf.org/html/rfc7519

"bin" : "411111"

})

"securityCode" : { },

"expirationMonth" : {
"value" : "o06"

})

“type" : {
"value" : "@01"

}

}

Token Verification

When you receive the transient token, you should cryptographically verify its integrity using the
public key embedded within the capture context. Doing so verifies that Cybersource issued the token
and that the data has not been tampered with in transit. Verifying the transient token JWT involves
verifying the signature and various claims within the token. Programming languages each have their
own specific libraries to assist. For an example in Java, see: Java Example in Github.

Capture Context API

This section contains the information you need to request the capture context using the capture
context API.

The capture context request is a signed JSON Web Token (JWT) that includes all of the merchant-
specific parameters. This request tells the frontend JavaScript library how to behave within your

payment experience. For information on JSON Web Tokens, see JSON Web Tokens (on page 123).

You can define the payment cards that you want to accept in the capture context. Use the
allowedCardNetworks field to define the card types.

Available card networks for card entry:

* American Express
* Diners Club

e Discover

Digital Accept Secure Integration | Click to Pay Drop-In Ul | 156

https://github.com/CyberSource/cybersource-unified-checkout-sample-java/blob/main/src/main/java/com/cybersource/example/service/JwtProcessorService.java

*JCB
» Mastercard

 Visa

For more information on enabling and managing Click to Pay, see Enabling Click to Pay (on page
102).

Digital Accept Secure Integration | Click to Pay Drop-In Ul | 157

Important:

When integrating with Cybersource APIs, Cybersource recommends that you dynamically
parse the response for the fields that you are looking for. Additional fields may be added in
the future.

You must ensure that your integration can handle new fields that are returned in the
response. While the underlying data structures will not change, you must also ensure that
your integration can handle changes to the order in which the data is returned. Cybersource

uses semantic versioning practices, which enables you to retain backwards compatibility as
new fields are introduced in minor version updates.

Endpoint

Production: POST https://api.cybersource.com/up/vl/capture-contexts

Test: POST https://apitest.cybersource.com/up/vl/capture-contexts

Digital Accept Secure Integration | Click to Pay Drop-In Ul | 158

Required Fields for Requesting the Capture Context

Your capture context request must include these fields:
allowedPaymentTypes
clientVersion
country
locale
orderInformation.amountDetails.currency
orderInformation.amountDetails.total Amount

targetOrigins
The URL in this field value must contain https.

For a complete list of fields you can include in your request, see the Cybersource REST API Reference.

REST Example: Requesting the Capture Context

Endpoint:
* Production: POST https://api.cybersource.com/up/vl/capture-contexts

Test: POST https://apitest.cybersource.com/up/vl/capture-contexts

"targetOrigins": [
"https://unified-payments.appspot.com"
]J
"clientVersion": "©.19",
"allowedCardNetworks™ : ["VISA", "MASTERCARD", "AMEX"],
"allowedPaymentTypes" : ["CLICKTOPAY"],
"country": "US",
"locale": "en_US",
"captureMandate": {
"billingType": "FULL",
"requestEmail": true,
"requestPhone": true,
"requestShipping": true,
"shipToCountries™: [
"us",
"UK"
]J

Digital Accept Secure Integration | Click to Pay Drop-In Ul | 159

https://developer.cybersource.com/docs/cybs/en-us/api-fields/reference/all/rest/api-fields/allowed-payment-types.html
https://developer.cybersource.com/docs/cybs/en-us/api-fields/reference/all/rest/api-fields/client-version.html
https://developer.cybersource.com/docs/cybs/en-us/api-fields/reference/all/rest/api-fields/country.html
https://developer.cybersource.com/docs/cybs/en-us/api-fields/reference/all/rest/api-fields/locale.html
https://developer.cybersource.com/docs/cybs/en-us/api-fields/reference/all/rest/api-fields/order-info-aa/order-info-amount-details-currency.html
https://developer.cybersource.com/docs/cybs/en-us/api-fields/reference/all/rest/api-fields/order-info-aa/order-info-amount-details-total-amount.html
https://developer.cybersource.com/docs/cybs/en-us/api-fields/reference/all/rest/api-fields/target-origins.html
https://developer.cybersource.com/api-reference-assets/index.html#unified-checkout
https://developer.cybersource.com/api-reference-assets/index.html#unified-checkout

"showAcceptedNetworkIcons":

}s

"orderInformation": {

true

"amountDetails": {
"totalAmount": "21.00",
"currency": "USD"

¥
"billTo": {
"address1": "1111 Park Street",
"address2": "Apartment 24B",
"administrativeArea": "NY",
"country": "US",
"district": "district",
"locality": "New York",
"postalCode": "00000",
"company": {
"name": "Visa Inc",
"addressl": "900 Metro Center Blvd",
"administrativeArea": "CA",
"buildingNumber": "1",
"country": "US",
"district": "district",
"locality": "Foster City",
"postalCode": "94404"
¥
"email”: "maya.tran@company.com",
"firstName": "Maya",
"lastName": "Tran",
"middleName": "S",
"title": "Ms",
"phoneNumber": "1234567890",
"phoneType": "phoneType"
¥
"shipTo": {
"address1": "Visa",
"address2": "123 Main Street",
"address3": "Apartment 102",
"administrativeArea": "CA",
"buildingNumber": "string",
"country": "US",
"locality": "Springfield",
"postalCode": "99999",
"firstName": "Joe",
"lastName": "Soap"
}

Digital Accept Secure Integration | Click to Pay Drop-In Ul | 160

Successful Encrypted JWT Response to Request

eyJraWQiOiJgNCIsImFsZyI6I1JTMjU2In0.eyImbHgiONnsicGFOaCI6Ii9mbGV4L3YyL3Rva2VucyIsImRhdGEiOi
JHeUhXVOd55G51K2F1d1JsalVUaGIoQUFFQVZMbTR6QTAGUHBqaGFXOHVSZ2UVNFQweEtIbWOKUWNYaE1hdORmVzVQ
VFBLNXB1Z0@5vRkVocnNacjdnbldLeHBRATNWSm4vTDBjbmZ0aTRSdjd1TElcdTAWM2QiLCIvcmlnaW4iOiJodHRwcz
ovL3NeYWd1Zmx1leC5jeWI1cnNvdX1jZzS5jb20iLCIqd2siOnsia3R5IjoiUINBIiwiZSI6TkFRQUIiLCI1c2UiOidl
bmMiLCJuIjoibVhHbilDb11DX1pkODVQdTJIaaDluVDdZOUpQX1RjUVIBSz1BQTFHQkIfOFVXd2FHWEZIMGxfa2EwXz
VOekF1leUSuVWZLQO16WFFHV2dMZ2hnZXdLMjIzW1VXVTdDTOK4ARKNTWktpUjBYRGI2TTVZYkYxejkO@TmNmWVIGcOpo
ZzhTbE1jY0@stS00tOUFjd1dYQW1XUEsOMk5GZn1IVE5uX3BpVDdhZHRDMGFZQ1lhCdkw2WXFmcWM5bXBua@5FQTIVNO
X5VWFYyRy1rVFVIQW8XxX2tjdW1tTEF1X1Y50EQyMndsaHMtekhEcnFVTFhsNEAKSGF6WjNXVWIDWHc5c@02dFowVmVn
X1Bpbnhmck9mazA@RWNaV1M5c1BXWW1IHRNA3V2NyROFQTKRCQzFPZONKNW1mRmpMNEtpcVpVNURpTWF sbURGAzg5VV
plbl1BVW1rdUU1SURRIiwia21kIjoiMDBDeWg5UHhhdDdCUkMwa®pXUG5hUVIsOU9jTGMzZVoifX0sImNOeCI6W3si
ZGFOYSI6eylhbGxvd2VkUGF5bWVudFR5cGVzIjpbeyJwYWd1IjoxLCI@eXB1IjoiUEFORUSUULlkifSx7InBhZ2Ui0j
IsInR5cGUi0iITUKNWSVNBIN®seyIwYWd1IjozLCI0eXB1IjoiU1IDTUFTVEVSQOFSRCIOLHSsicGFnZSI6GNCwidH1w
ZSI6I1INSQOFNRVEifSx7InBhZ2Ui0jUsINR5cGUi0iIJHTOOHTEVQQVkifSx7InBhZ2Ui0jYsInR5cGUi0iIBUFBMRV
BBWSJ9XSwicGF5bWVUdENVbmZpZ3VyYXRpb25zIjp7I1NSQ1ZIUGEiOnsib3IpZ21uljoiaHRAOCHMELY9zYW5kYm9o4
LWFzc2VOcy5zZWN1cmUuY2hlY2tvdXQudmlzYS5jb20iLCIwYXRoIjoil2NoZWNrb3VOLXdpZGd1dC9yZXNvdXIjzZX
MvanMvc3JjLWktYWRhcHR1ci92aXNhU2RrLmpzIiwicGFUuRW5jcnlwdGlvbktleSI6eyJrdHkiOiJSUGEiLCI1Ijoi
QVFBQiIsInVzZSI6ImVuYyIsImtpZCI6I1daTEQzSOVBUFAIRThMSOPEMUOXMTNYMXExamZUZES5pNTIOal9aQwWxLVm
t1anBxMOEiLCJuIljoic1pQSXVzRGY3eVFubmhCalU5bXUXNFZPTzNDcnVpM2I3ckFmMktZZW9iVVItWEEXN2IXxS1g5
amcwQ2QtdmdwbXV5VHI4Q1VTYy0eYjAtVVBnU3dHRNFQV1VweDA4RXhxcndQRE92RM9gQm91MndseXE4YmNSMFVz LU
IMZUN6UGU1bE1IWZFNYVFhYWGNOCcXUtcWIyMmpDQONKQUxweHNBcnNib@®1PWHNMZWRoMOOOWESRNVhHQXRSZjdilS11
VFk1RHI5SOxZeVV2WktBb1kwNE1LS1BFTzUOWW1IRkO1RFRBaAE5PbXMwOD1qZE1keC1VUk1LSmpQVTItUnBIRZF10E
XDRzAyOF JUSXBQcO5iUmFudVM1VEFZX3pseERnYjFoS@0zN11iWkVOSExnOVBYVEJ0oZE9NbFUSMERUTGxmY2IMVGEt
RDAEZ2xqQWFXQ3V2ekxQYUd3In@sInBhcmFtZXR1cnMiOnsic3JjSW5pdG1lhdG9ySWQi0iISNDVOMzQzRDZLWFpSWU
1CSVhMSTIxeDgtWGtMawh4Q211cFMzaEF1Um91RWcwaTVVIiwic3IjaURwYUlkIjoiOTBhZD1hN2QtOTU5Ni@0ZWQx
LWE3MTEtMmJjOT11M2IjNWZmIiwic3IjaVRyYW5zYWNOaWOuSWQiOiIzMWIKNTRjZi1hOGIyLTQWMTEtODQONY1jY]
€zZDMAOGUONFYiLCIkcGFUcmFuc2FjdGlvbk9wdGlvbnMiOnsiZHBhTG9jYWx1IjoiZW5FVVMiLCIwYX1sb2FkVH1w
ZUluZGljYXRvciI6IkZVTEWiLCJyZXZpZXdBY3Rpb24i0iJjb250aW51ZSTIsImRwWYUFjY2VwdGVkQmlsbGluZONvdi
50cmllcyI6W10sImRwWYUFjY2VwdGVkU2hpcHBpbmdDb3VudHIpZXMiOltdLCIkcGFCaWxsaW5nUHI1ZmVyZW5]ZSI6
IKkFMTCIsImRwYVNoaXBwaW5nUHI1ZmVyZW5jZSI6IKkFMTCISsImNvbnN1bWVyTmFtZVI1cXV1c3R1ZCI6dHI1ZSwiY2
9uc3VtZXIFbWFpbEFkZHI1c3NSZXF1ZXNOZWQiOnRydWUs ImNvbnN1bWVyUGhvbmVOdW1iZXISZXF1ZXNOZWQiOnRy
dWUSINRyYW5zYWNOaWOuQW1vdW50Ijp7InRyYW5zYWNOaWOUQWI1vdW50IjoiMS4wMSIsInRyYW5zYWNOaWouQ3Vycm
VuY31Db2R1IjoiVVNEIN@sInBheWl1lbnRPcHRpb25zIjp7ImRwYURS5bmFtaWNEYXRhVHRSTW1udXR1cyI6MTUSImRS
bmFtaWNEYXRhVHIwWZSI6I1RBV1YiLCIkcGFQYW5SZXF1ZXNOZWQiOmZhbHN1fX19fSwiU1IDTUFTVEVSQOFSRCI6ey
JvcmlnaW4iOiJodHRwczovL3NhbmRib3guc3JjLmlhc3R1cmNhemQuY29tIiwicGFOaCI6Ii9zZGsvc3Ijc2Rrlmlh
c3R1cmNhcmQuanMiLCIwYW5FbmNyeXBOaWouS2V5Ijp7Imt@eSI6I1ITQSISImUiOiJBUUFCIiwidXN1IjoiZW5jIi
wia2lkIjoiMjAyMzAyMDcyMjM1MjEtc2FuZGIlveCimcGFULWVuY3J5cHRpb24tc3JjLWlhc3R1cmNhcmQtaW50Iiwi
a2V5X29wcyI6WyJ1bmNyeXBOIiwid3JhcEt1eSIdLCIhbGciOiISUGELTOFFUCOYNTYiLCJuIjoidDA2SThzamxTLX
Jyczd1Q2FnSDh1dm91dW1hUm92S3ppW1INIJOVMyTj1IRFE5dFcyUGFwWZ1IhOUxjMUt2ZUVCRFZzMjdQa2hrVTVPeUhn
UDBpRWpUdUtWcHZoNT1UNGXxhLW1CU®1lsczdVZWNVUUXMYTBXa21idEw3ak5kbHRBNWZXNOFoYOFyNXFjYTk4OHFyTG
Q3SX1yOUUwQzNUeGIUOXRVMW1RY3B60G9jWk9EULhvaWRGQW5PVkwlWUdGbWxzcmVEYko@VmhzaTBWQWRjY1F jahWwt
eWRTZ3VySeItcnFLcHBiOWVwWb211NFFVaDMz0ODIDdjh0Ob23ZbUYzb3M4bkdHZOdQLWNSWGBWbnNNLY1BBZ2ZybFF6b3
M3cUh4VU9yRmUyeF9sWjFHMUFFLVhya3J4akl5cz1xNTNHTVITTKNROGMtX21jRj1wYnE@SF1Ccy12RDVRINOsInBh
cmFtZXR1cnMiOnsic3JjaVRyYW5zYWNOaWOuSWQiOiIzMWIKNTRjZilhOGIyLTQWMTEtODQONY1jYjczZDMAOGUON]
YiLCJzcmNpRHBhSWQi0iI50DQ4Y2ZmNC1jODYOLTRMMTgtOWYwMy1hOGY1IMGE20TI1ZGRfc31zdGVtdGVzdCIsInNy
YO@luaXRpYXRvcklkIjoiNmY1ZDZjMDktZjh1Mie@MzMwLWEZzZGYtMjBiOWFKN2EONTIiIiwiZHBhVHIhbnNhY3Rpb2
5PcHRpb25zIjp7InRyYW5zYWNOaWOUVHIWZSI6I1BVUKNIQVNFIiwiZHBhTG9jYWXx1IjoiZW5FVVMiLCIkcGFBY2N1
cHR1ZFNoaXBwalW5nQ291bnRyalWVzIjpbXSwiY29uc3VtZXIFbWFpbEFkZHI1c3NSZXF1ZXNOZWQiOnRydWUsImNvbn

Digital Accept Secure Integration | Click to Pay Drop-In Ul | 161

N1bWVyUGhvbmVOdW1iZXISZXF1ZXNOZWQiOnRydWUsInNRyYW5zYWNOaWOuQW1vdW50Ijp7 InRyYW5zYWNOaWOuQW1v
dW50IjoiMSAWMSISINRYYW5zYWNOaW9uQ3VycmVuY31Db2R1IjoiVVNEIN@sImRwWYUFjY2VwdGVkQmlsbGluZONvdW
50cmllcyI6W10sImRwYUIpbGxpbmdQcmVmZXI1bmN1IjoiR1VMTCIsImRwYVNoaXBwaW5nUHI1ZmVyZW53jZSI6IkZV
TEwilLCJjb25zdW11ck5hbWVSZXF1ZXNOZWQiOnRydWUsInBheWxvYWRUeXB1SW5kaWNhdGOyIjoiR1VMTCIsInBhelW
11bnRPcHRpb25zIjp7ImR5bmFtaWNEYXRhVH1wZSI6IKNBUKRFQVBQTE1DQVRITO5FQ1IZUFRPR1IBTVOTSE9SVFIG
T1ININ19fX0sI1NSQOFNRVgiOnsib3Jpz2luljoiaHROCHM6LY9xd3d3LmFleHAtc3RhdGljLmNvbSIsInBhdGgiOi
IVYWthbWFpL3J1bW9OZWNvbW11lcmN1L3NjcmlwdHMVYW11eFNESYyOxLjAuMC5qcyIsInBhbkVuY3J5cHRpb25LZXki
Onsia3R5IjoiUINBIiwiZSI6IKFRQUIiLCI1c2UiOiJ1bmMilLCIraWQiOilzcmMtYW11eC1jYXIKLWVUYyOyMDIOIi
wiYWxnIjoiUINBLU9BRVAtMjU2IiwibiI6Im1FazBibUxDM1pRVy1hNEtYMWSEWTNaZ1BMRNnIJIOHRUVX1JYjVrVEtn
emF1YWdpbWFINFhxUDRadzAlaWk2TXZkdk4wVDIweVNKUTRgb2toUEMySVd1bW1WUEc4ZkNQQk1KeHhqeTIFdT1lvdG
JpdedSQkNneHdjdS1hY2pZYXVwV1BORE43ZWSnSERKbkINYXIsbodyUFVNNk1FRVpXX3ZFQj1jU3INX@IhOFNjQzhS
YWZNnT1NZODFpeGF4UEE4Y@®90QUF2ckxRNOtoRTVReFN6SUImcnpiMUXCWUAMNF1QQnVuZk5BMnczZnZMd2ZCbDIfLV
JGUKNVbVBFdjFOdVhxeG8xUk4wO0GoydW44ZW1jR3ZudDBndCOYMWSHcmI jNnhwcDdwiWlkyb2otaGMwiW1VsTnl1FX2tK
CEXTNUSVWjhHZU9acDRxV1J4aGtIJUEd4RWVGLVFXaVNnOHVXazF4Nm5jdGhy TVVKWVYXSFB1OHRIa@pEbThBYS1Ec2
hQTmVpeERgX1ZGVkVTOFYteU1lJUndnLVUyODIXUGIWVDIO®S1JYZG5gbE52Y2xCcO1fNFZ3ZzVjVeVoU2tTc3pVQXkx
UENTRm5rWjVIRU9yaGdfMFRwZTdhaU84dzVzUndOaFpuUnBKeUlzUHQtbE1Dbzd6cjg1QjJ2eGNVUGZmULINWMOZaIn
@sInBhcmFtZXR1cnMiOnsic3JjaVRyYW5zYWNOaWOuUSWQiOiIzMWIKNTRjZi1hOGIyLTQwWMTEtODQONy1jYjczZDM4
OGUON]jYiLCJIzcmNIbm1lOaWFOb333ZCI6IMQyZTdkOTc1LWIWYWEENGZhYSO5YTUXLTYAMDAYMjkwZDCcINiIsImRwYU
RhdGEiOnsiZHBhTmFtZSI6InR1c3QgU2hvcCB3ZWIzaXR1IFJ1Z221zdHIhdGlvbiIsImRwYUxvZ29VcmkiOiJodHRw
0i8vd3d3LnR1c3RzcmNyZWdpc3RyYXRpb24uY29tIiwiZHBhUHI1c2VudGF@aWOuTmFtZSI6InR1c3QgU2hvcCB3ZIW
JzaXR1IFJ1Z21zdHJhdGlvbiIsImRwYVVyaSI6Imh@dHA6LY93d3cudGVzdHNyY331Z21zdHIhdGlvbi5jb20ifSwi
ZHBhVHIhbnNhY3Rpb25PcHRpb25zIjp7 IMRWYUXVY2FsZSI6ImVuX1VTIiwiZHBhQWNjZXBOZWRCalWxsaW5nQ291bn
RyaWVzIjpbXSwiZHBhQWN]jZXBOZWRTaGlwcGluZONvdW50cmllcyI6W10sImRwYUIpbGxpbmdQcmVmZXI1bmN1Ijoi
QUXMIiwiZHBhU2hpcHBpbmdQcmVmZXJI1bmN1IjoiQUXMIiwiY29uc3VtZXIOYW11UmVxdWVzdGVkIjp@cnV1LCIjb2
5zdW11ckVtYW1sQWRkcmVzc1J1cXV1c3R1ZCI6dHI1ZSwiY29uc3VtZXJIQaG9uZU51bWI1lc1I1cXV1c3R1ZCI6dHI1
ZSwicmV2aWV3QWNOaW9uIjoiY29udGludWUilCI®aHI1ZURZUHI1ZmVyZW5jZSI6IK5PTkUiLCIwYX1tZW50T3BOalW
9ucyI6W3siZH1uYW1pYORhdGFUeXB1IjoiRF10QU1JQ19DQVIEXINFQ1VSSVRZXONPREUiLCIkcGFEeWShbW1jRGFO
YVRObE1pbnVOZXMiOiIXNSI9XX19fSwiRO9PROXFUEFZIjp7ImNsaWVudExpYnJhcnkiOiJodHRwczovL3BheS5nb2
9nbGUuUY29tL2dwL3AvanMvcGF5LmpzIiwicGF5bWVudEOwdGlvbnMiOnsiZW52aXJvbm11bnQi0iJURVNUIN®sInBh
eW11bnREYXRhUmVxdWVzdCI6eyJhcGlWZXJIzaW9uIjoyLCIhcG1WZXIzaWOuTWlub3Ii0jAsImllcmNoYW50SW5mby
I6eyJtZXJjaGFudE1kIjoiQkNSMkRONFQ3RERZQIRUViIsIm11lcmNoYW50TmFtZSI6I1VuaWZpZWQgQ2hlY2tvdXQg
TWVYY2hhbnQifSwiYWxsb3d1ZFBheWl1bnRNZXRob2RzIjpbeyl0eXB1lIjoiQOFSRCIsInBhcmFtZXR1cnMiOnsiYW
xsb3d1ZEF1dGhNZXRob2RzIjpbI1BBT19PTkxZIiwiQ1JZUFRPR1IBTV8ZzRFMiXSwiYWxsb3d1ZENhcmROZXR3b3Jr
cyI6WyIJWSVNBIiwiTUFTVEVSQOFSRCISIKFNRVgiXSwiYmlsbGluZOFkZHI1c3NSZXF1aXJ1ZCI6dHI1ZSwiYmlsbG
1uZOFkZHJI1c3NQYXIhbWVOZXJIzIjp7ImZvcmlhdCI6IKZVTEWiLCIwaGOuZU51bWI1lclI1cXVpcmVkIjpOcnV1fX0s
InRva2VuaXphdGlvb1NwZWNpZmljYXRpb24iOnsidH1wZSI6I1BBWU1FT1RFROFURVABWSIsInBhcmFtZXR1cnMiOn
siZ2F@ZXdheSI6IMN5YmVyc291cmN1IiwiZ2F0ZXdheU1lcmNoYW50SWQi0iJwc190cGEifX19XSwidHIhbnNhY3Rp
b253IbmZvIjp7InRvdGFsUHIpY2VTdGFOdXMi0iJGSUSBTCISINRVAGFSUHIpY2Ui0iIxLjAxIiwiY291bnRyeUNVZG
UiOiJVUyIsImN1cnJ1bmN5Q29kZSI6I1VTRCIOLCI1bWFpbFI1cXVpecmVkIjpOcnV1LCIzaGlwcGluZOFkZHI1c3NS
ZXF1aXJ1ZCI6dHI1ZSwic2hpcHBpbmdBZGRYyZXNzUGFYyYW11dGVycyI6eyJwaG9uZU51bWI1c1lI1cXVpecmVkIjpOcn
V1fX19LCIBUFBMRVBBWSI6eyJzZXNzaW9uUGFOaCI6IiombGVAL3YyL2FwcGx1L3BheWllbnQtc2Vzc2lvbnMilCJIt
ZXJjaGFudE1kZW50aWZpZXIi0iJtZXJjaGFudC5jb20uY31iZXIzb3VyY2Uuc3RhZ2VmbGV4IiwiZGlzcGxheUS5hbW
Ui0iJVQyBUZXNOIN19LCIjYXBOAXI1TWFUZGFOZSI6eyJiaWxsaW5nVHIWZSI6IKZVTEWiLCIyZXF1ZXNORW1haWwi
OnRydWUsInJ1cXV1c3RQaGOuZSI6dHI1ZSwicmVxdWVzdFNoaXBwaW5nIjp@cnV1LCIzaGlwVG9ODb3VudHIpZXMiOl
tdLCJIZzaG93QWNFZXBOZWROZXR3b3JIrSWNvbnMiOnRydWVOLCIvemR1lckluZmOybWF@aWOuIjp7ImFtb3VudER1dGFp
bHMiONnsidG9OYWXBbW91bnQiOiIxXLjAXxIiwiY3VycmVuY3ki0iJVUBQifX0sInRhcmdldE9yaWdpbnMiOlsiaHROcH
M6Ly90aGUtdXAtZGVtby5hcHBzcGIOLMNVbSIdLCIpZnIhbWVzIjp7ImljZSI6IiotY2UvaWZyYW11llmhObWwilCJIi
dXROb25zIjoil2I1dHRvbmxpc3QvaWzZyYW11lLmhObWwilCIzcmMiOiIvc2VjdXJI1LXI1bW90ZS1jb21tZXIjZS9zcm
MuaHRtbCIsImNOcCI6Ii9jdHAVY3RwWLMhObWwilCInb29nbGVwYXki0iIvZ29vZ2x1cGF5L2dvb2dsZXBheS50dGls

Digital Accept Secure Integration | Click to Pay Drop-In Ul | 162

TiwiYXBwbGVwYXkiOiIvYXBwbGVwYXkvYXBwbGVwYXkuaHRtbCIsInBhemUiOiIvcGF6ZSOwYXplLmhObWwifSwiY?2
XpZW50VmVyc21vbiI6IjAuMTkiLCIjb3VudHI5IjoiVVMiLCIsb2NhbGUi0iJ1b19VUyIsImFsbG93ZWRDYXIkTmVeO
d29ya3MiOlsiVk1lTQSIsIk1BUIRFUKNBUkQiLCIBTUVYI1OsImNyIjoiNmMOdUcyemFXdVBvbkxLMOR2NEwxV1IpTF
VOMkFVczY4QU84bVdaUTAOX1RNLVFDADhNUDNTQk1vcGQ2Y2NtOTdmSE01QXViVzh6VFhITWO1TTRjQWFrbm8ONktI
VndGRFpxQOtfWTVWMEVZRHIMdFVTREFrZ21KZOpNbHI2cnYzTkpFOWdzc1dBM18zdDIBR2hQbEtfMU9rZyIsInNlcn
ZpY2VPcmlnaW4iOiJodHRwczovL3NOYWd1dXAuY31iZXJIzb3VyY2UuY29tIiwiY2xpZW50TGlicmFyeSI6ImhO@dHBz
0i8vc3RhzZ2V1cC5jeWI1cnNvdX3jZS5jb20vdXAvdjEVYXNZZXRzLZAUMTKkuMCOTZWN1cmVBY2N1cHRhbmN1LmpzIi
wibG9nZ21uzZ1BhdGgiOiIvdXAvdjEvbGOnLWV2ZW50cyIsImFzc2VOc1BhdGgiOiIvdXAvdjEVYXNzZXRzLzAuMTku
MCIsImNsaWVudExpYnJhcnllbnR1Z3JpdHkiOiJzaGEYNTYtW11DT2tucVh5bjRad3NyOFYwaE50cjZauitzZzYThIbH
NkdFplTkhPbDJYVVXx1MDAZzZCJI9LCJ0eXB1IjoiZ2RhLTAUOS4WIN1dLCIpc3MiOiJGbGVAIEFQSSIsImVAcCIBMTCX
MDk2NDc4MCwiaWFOIjoxNzEwOTYzODgwLCIqdGkiOiI4SWs4bHU2NEh3NmpDVDhsIn® . XWXmjiZZGyHWIhT1hbBnc2
xfhcYczpBYxhTn4gONMt2utMaPR8wWcZ8TYDXd8HRLBWZkktkXxFFetJ4Tc6dQ4irZ6KmalWItWEUIpjN-5sLC4Qrl
gG1JO0H5_hK6n_1hnjcQeRUBg-MsCSRBE_MA6ROSZgyfcl WwLOglTQUiKN5SvaM_37o00imebPQfvYyXyR_6Zkn9fu
51w6NF_QjowtuQP4J4P3cgyZzzOFNKuHOWi7ISmyW6BcQXQrec577SRBfcMhhC3PBx150rXuadqUl_qYbplA8P4n6f
2--onAYef3UXFHmc28eRiTEeN@10OP1Yj45CIotbuw36mZrnRPQ

Decrypted Capture Context Header

Ill(idll: IIJ'4-IIJ
"alg": "RS256"
}

Decrypted Capture Context Body with Selected Fields

{
"flx" i {
// filled with token metadata
¥
"ctx" [{
// filled with data related to your capture context request parameters
"data" : {
"clientLibrary" : "https://https://
apitest.cybersource.com/up/vl/assets/0.19.0/SecureAcceptance.js"
¥
"type" : "gda-0.9.0"
YL
"iss" : "Flex API",

"exp” : 1710964780,
"iat" : 17109638860,
"jti" : "8Ik81lu64HW6jCT81"

}

Digital Accept Secure Integration | Click to Pay Drop-In Ul | 163

Payment Details API
This section contains the information you need to retrieve the non-sensitive data associated with
a Unified Checkout transient token and the payment details API. This API can be used to retrieve

personally identifiable information, such as the cardholder name and billing and shipping details,
without retrieving payment credentials; which helps ease the PCI compliance burden.

There are two methods of authentication:

* HTTP Signature Authentication

* JSON Web Token

Digital Accept Secure Integration | Click to Pay Drop-In Ul | 164

https://developer.cybersource.com/docs/cybs/en-us/platform/developer/all/rest/rest-getting-started/restgs-http-message-conf-intro.html
https://developer.cybersource.com/docs/cybs/en-us/platform/developer/all/rest/rest-getting-started/restgs-jwt-const-intro.html

Important:

When integrating with Cybersource APIs, Cybersource recommends that you dynamically
parse the response for the fields that you are looking for. Additional fields may be added in
the future.

You must ensure that your integration can handle new fields that are returned in the
response. While the underlying data structures will not change, you must also ensure that
your integration can handle changes to the order in which the data is returned. Cybersource

uses semantic versioning practices, which enables you to retain backwards compatibility as
new fields are introduced in minor version updates.

Endpoint

Production: GET https://api.cybersource.com/up/vl/payment-details/{id}

Test: GET https://apitest.cybersource.com/up/vl/payment-details/{id}

The {id} is the full JWT received from Unified Checkout as the result of capturing payment

information. The transient token is a JWT object that you retrieved as part of a successful capture of
payment information from a cardholder.

Digital Accept Secure Integration | Click to Pay Drop-In Ul | 165

Required Field for Retrieving Transient Token Payment Details

Your payment credentials request must include this field:
id

The {id} is the full JWT received from Unified Checkout as the result of capturing
payment information.

REST Example: Retrieving Transient Token Payment Details
Endpoint:

* Production: GET https://api.cybersource.com/up/vl/payment-details/{id}

» Test: GET https://apitest.cybersource.com/up/vl/payment-details/{id}

The {id} is the full JWT received from Unified Checkout as the result of capturing payment
information. The transient token is a JWT object that you retrieved as part of a successful capture of
payment information from a cardholder.

Request

GET https://apitest.cybersource.com/up/vl/payment-details/{id}

Response to Successful Request

{
"paymentInformation": {
"card": {
"expirationYear": "2024",
"number™: "XXXXXXXXXXXX1111",
"expirationMonth": "@5",
"type": "@01"
}
}J

"orderInformation": {
"amountDetails": {
"totalAmount": "21.00",

"currency": "USD"
}s
"billTo": {
"lastName": "Lee",

"country": "US",

Digital Accept Secure Integration | Click to Pay Drop-In Ul | 166

"firstName": "Tanya",

"email"”: "tanyalee@example.com"

"shipTo": {

"locality"”: "Small Town",
"country": "US",
"administrativeArea": "CA",
"addressl1": "123 Main Street",
"postalCode": "98765"

Payment Credentials API

This section contains the information you need to retrieve the full payment credentials collected by
the Unified Checkout tool using the payment credentials API. The payment information is returned in
a redundantly signed and encrypted payment object. It uses the JSON Web Tokens (JWTs) as the data

standard for communicating this sensitive data.

Important: Payment information returned by the payment-credentials endpoint will contain
Personal Identifiable Information (PII). Retrieving this sensitive information requires

your system to comply with PCI security standards. For more information on PCI security
standards, see: https://www.pcisecuritystandards.org/

The response is returned using a JWE data object that is encrypted with your public key created
during the Unified Checkout tool's integration. For more information, see Upload Your Encryption
Key (on page 172).

To decrypt the JWE response, use your private key created during the Unified Checkout tool's
integration. The decrypted content is a JWS data object containing a JSON payload. This payload can
be validated with the Unified Checkout public signature key.

Digital Accept Secure Integration | Click to Pay Drop-In Ul | 167

https://www.pcisecuritystandards.org/

Important:

When integrating with Cybersource APIs, Cybersource recommends that you dynamically
parse the response for the fields that you are looking for. Additional fields may be added in
the future.

You must ensure that your integration can handle new fields that are returned in the
response. While the underlying data structures will not change, you must also ensure that
your integration can handle changes to the order in which the data is returned. Cybersource
uses semantic versioning practices, which enables you to retain backwards compatibility as
new fields are introduced in minor version updates.

Endpoint

Production: GET https://api.cybersource.com/flex/v2/payment-credentials/{ReferencelID}

Test: GET https://apitest.cybersource.com/flex/v2/payment-credentials/{ReferenceID}

{ReferencelID} is the reference ID returned in the id field when you created the payment credentials.

Example: Sample Decrypted JWE Data Object

{ // he
kid =
cty =

// re
iss =
sub =
aud =
exp =
iat =
jti =

"paym
"to

}s

ader
llzull
"json+pc”

gistered claims

"https://flex.visa.com"

"ps_hpa"

"https://online.MyBank.com"

1683105553

1683104035
"ae798686-a849-4dfa-836d-43e09cb183a4"

entInformation": {

kenizedCard": {

number": "4111111111111111",
expirationMonth": "12",
expirationYear": "2031",
type": "@01",

cryptogram": "",
transactionType": "1"

// Merchant ID
// expiry of payment credentials

// timestamp when JIWT was created
// transaction id

Digital Accept Secure Integration | Click to Pay Drop-In Ul | 168

"orderInformation": {

"amountDetails": {
"totalAmount": "102.21",

"currency": "USD"

¥
"billTo": {
"firstName": "John",
"lastName": "Doe",
"address1": "1 Market St",
"locality": "san francisco",
"administrativeArea": "CA",
"postalCode": "94105",
"country": "US",
"email": "test@cybs.com",
"phoneNumber": "4158880000"
}
}
}
.SIGNATURE

Digital Accept Secure Integration | Click to Pay Drop-In Ul | 169

Required Field for Retrieving Payment Credentials

Your payment credentials request must include this field:

ReferencelD

The reference ID that is returned in the id field when you created the payment
credentials.

REST Example: Retrieving Payment Credentials

Endpoint:
* Production: GET https://api.cybersource.com/flex/v2/payment-credentials/{ReferenceID}
» Test: GET https://apitest.cybersource.com/flex/v2/payment-credentials/{ReferenceID}

{ReferencelID} is the reference ID returned in the id field when you created the payment credentials.

Request

https://api.cybersource.com/flex/v2/payment-credentials/E-firqlLk7GiziQwXxAsq

Encrypted Response to Successful Request

eyJhdWQi0iJwc3AilLCIzdWIiOiJwc190cGEiLCIraWQiOiIyMDIzMDUXNC1kcmFmdClwc3AtZW5jcnlwdCIsT
mN@eSI6IkpXVCIsImVuYyI6IKEYNTZHQOOiLCI1eHAiOjE20DQXNDk2NjQsImFsZyI6I1ITQS1PQUVQLTIINI
IsImp@aSI6IjAONDUWNWNiILTM1ZDYtNDU2ZSO50TBILWRKZjQwYZzI5Nz1hNCI9. enhUfZJ0jbMX-wZPIOb1z]j
8sFZiix6JSJyNw2i9QJ4k_hd7Iy_UMYvOmS-X1FJwjHOIQxMIb1lSV8XqMegIOm5dYBYdqouUfC8zq4Zm_dsMo
Tp3m9T6z-A_eJ8MGaxqTHST2vWiXB-EMrww2eCXPyVTBkI10dmYIX-s85vsqYpW-s@Th1CKaGI7B4_rJKNa7m
OU9VMBtBNnfzhHLtNHDW8VsX8rLmTT76Ct2jMdIoQn1QRgEOL-zYu@ImOgHERavUtq _71Dw9Ta73_TFw3KA2fs
G13CURYyR7ZXoZy9 nRifwHjwNVbaFRceAzXoVtvM8H8F-ZzIC8AdA1FRye7RqcK9Q.01rMxOMDkVDU6gOS. TP
fBhmleBfRjCSSvUT6SXxFeZ3SGwOC6qX2Z4r1AEY9100r2Q2E1CMgB60-q6DNKkGtASFONBzKtoBOYyAgXBpx3S7
2F1tR8bd40gmRnPyTOAscXa3eWbP45EqZgHW581wUtMwcBORC TS jxPnWUo-0GmKCtIgiUO4MT1Bs19HACLX7R
Wpws 100pKQAUFrURHIyhdE1JUArg jNQMdQwPvCjoZ2RxTzECEqQE110KmBGM-w8suowrnTNZ18cwVUZKzHQEJIV
-twAGYykQIIRCI3ydHfCupyUuA-5-WvlkénhcL3gND4JF-E3EIRpzm7WH8pCV5nzByUue-grHejg774c7fileh
fTBUZ8v6X7rTZUBLLOV5343X32QQy_G-vq5qcalZ8AS2XWSil7r8UEHoUSemYu5QAuXy1AhL32nDRZuXz0zQ1
9JsrTN2CD8gxU7tDpkUCEmMY2GEMp4sd-rfu_2gqBZDdr74tjYNgMsTIXSpgGDiwjLMIu4r460Yenc06-JIweGCT
8woIySjBRYpX1_axxcO6I9RUTSopPbslZwqg_zpy3UuDa9InlSexM--fatYfAehY857F7bFVX1nXeqr7Xe_Lri
bJIsx6CWIU1ihjMVtnF-SxeE3IdpIxyFYBb7D1il 3ywFooxcGgarXU-3_CBuDHvnJFDC_iQPaeH7csb-EMeNqgF
TmFF8dWNQYG7IIDFEnrnRW_XtnczH-Z2S67iVuGzGwIZDQfIZ-KLhnWr6FE1IENT1VLYXPM78WeocT7cnLXmr9oB
gevNmU3q_SV5nx1DLPuCqFOPmFNxaTjqfF2Qw_zOCvazwFWuBdUDdHilPghj3gfsOesAJVA7VoTDw2U3zte3V
09KcJLaHygwPomopWOODinKzcZelWfJ139984pQa5cOMSEToGegkRZyvSxpf5PTht30uB3F3qC4cVLOu4qukYsr
jXqOtxg3icde71XywfAtEZgf54jAP2C18IFmMGWL5YNIY44-275-GVZz2C8iCN1CCUP3U4eVxz2GtxNNSXuwY80R

Digital Accept Secure Integration | Click to Pay Drop-In Ul | 170

Udino4rF-0pqqdjX5FOUw632D3uR9cWB4Ee3v8TIA3-tRkGAScAcclEwjkwsILPgVLUS7HOMOANAEsznyHrd9
-Qfz_p-UjbsaD3e-_sr56-x2UZVVL6TAMMIgmS2C55CHgkkhtHBCu-vbOKOmssopIvaQA5jK6ZoCftewE8-98
816ZmoU8Sty05PSeKOyBlxFwTIeJlxt-moszRawFuBrLAbOu72y eeUtk1ltHpHV2Db7T6XvaRDANVOFZg8ianY
Y6uHidoT11ApjCp8VG90TI-uKWAEpOTU6GEHUSWZZUIBeGTKjzBkRAQ20cZs5P0b-qtjteoWo9QdnczipZ8de
my - FSZwWNRFPkeedl3oHLepeTgwVnmij9ovk@e5Wqq2GVUMe8sLa-4eEnjliIjAVUQIOYNIBeqLf6_wo3HF802k
47ZgSITuPHAUP41-D6sYrOcM6WvkCFKRTXw7ue5unri3MORpd2TEnzyw. TaLt6G8QyRykbrxb@ivolg

Decrypted Response to Successful Request

{ // header
kid = "zu"
cty = "json+pc”
}.
{
// registered claims
iss = "https://flex.visa.com"
sub = "ps_hpa" // Merchant ID
aud = "https://online.MyBank.com"
exp = 1683105553 // expiry of payment credentials
iat = 1683104035 // timestamp when JIWT was created
jti = "ae798686-a849-4dfa-836d-43e09cb183a4" // transaction id

"paymentInformation": {
"tokenizedCard": {
"number"”: "4111111111111111",

"expirationMonth": "12",
"expirationYear": "2031",
"type": "@01",
“cryptogram": "",
“"transactionType": "1"

}
}s

"orderInformation": {
"amountDetails": {
"totalAmount": "102.21",

“currency": "USD"

}J

"billTo": {
"firstName": "John",
"lastName": "Doe",
"address1": "1 Market St",
"locality"”: "san francisco",
"administrativeArea": "CA",

"postalCode": "94105",
“country": "US",

"email": "test@cybs.com",
"phoneNumber": "4158880000"

Digital Accept Secure Integration | Click to Pay Drop-In Ul | 171

}
}

}
.SIGNATURE

Unified Checkout Configuration
This section contains information necessary to configure Unified Checkout in the Business Center:

* Upload Your Encryption Key (on page 172)
* Enable Click to Pay (on page 175)

* Manage Permissions (on page 103)

Upload Your Encryption Key

Payment information can be retrieved from the Unified Checkout platform by invoking the Payment
Credentials API. This API retrieves all of the data captured by Unified Checkout. This information

is transmitted in an encrypted format to ensure the security of the payment information while in
transit.

You must generate an encryption key pair to retrieve this encrypted payment information, and the
public encryption key must uploaded to the Unified Checkout system.

Generate a Public Private Key Pair

You must generate a public-private key pair to upload to the Unified Checkout system. The public key
is uploaded to the Unified Checkout platform and is used to encrypt sensitive information in transit.
The private key is used to decrypt the sensitive payment information on your server. Only the private
key can properly decrypt the payment information.

! Important: You must secure your private decryption key. This key must never be exposed to
any external systems or it will risk the integrity of the secure channel.

Unified Checkout accepts only keys that meet these requirements:

Digital Accept Secure Integration | Click to Pay Drop-In Ul | 172

* Only RSA keys are supported. Elliptical curves are not supported.

* The minimum accepted RSA key size is 2048 bits.
* RSA keys must be in JWK format. More information on JWK format is available here:

https://datatracker.ietf.org/doc/html/rfc7517.

* The key ID must be a valid UUID.

Uploading Your Key Pair
When you have generated your encryption key pairs, you can upload your key to the Unified
Checkout platform. Keys can be loaded at any hierarchy that is enabled for them and are used for all

child entities that do not have keys loaded. You can upload a key at parent and child levels, but child
keys override parent keys.

Follow these steps to upload your key pair:

Digital Accept Secure Integration | Click to Pay Drop-In Ul | 173

https://datatracker.ietf.org/doc/html/rfc7517

1. Navigate to Payment Configuration > Unified Checkout. The Unified Checkout configuration
page opens.

cybersource

AVisa Solution

integrated Unified Checkout product. Easily enable digital payment options for
acceptance within your webpage.

Transaction Managameant "

- M
Fay by Link v

Virtual Terminal ot

s

1)

@ Recurring Billing W
@ Device Management R Decrypted payment credentials ENABLED
ﬁ Tools ~ Configure your Unified Checkout profile to support decrypted payment credentials
for usa bayond our acasystam. This is a required stap whan using the Click to Pay
S.AR-‘ Partfolio Managemant w Drop=in Ul to process payment on another gateway.
Your key must be unigue and in the JSON web key (JWK) format. Paste your JWK code
D Reports R in the text fiald below and click Save to upload key to your account. To edit or remove
after saving, click Edit, make your changes, and then click Save.
I] ol Analytics v
Disabled /"
ﬁ Payment Configuration ~

Digital Paymaent Solutions
Key Managament
Secure Acceptance Settings

Wabhook Settings

Unified Chackout

@ Account Management i

2. Click Enabled. You can upload your key in the appropriate section.

3. Upload the public encryption key in JWK format, and click Save.

Digital Accept Secure Integration | Click to Pay Drop-In Ul | 174

cybersource

AVisa Salution
Virtual Terminal
Transaction Management
Pay by Link
Recurring Billing
Daevice Managemant
Tools

Portfolio Manage ment

O s S22 [O

Reports

[—

0 Analytics

@ Payment Configuration

Digitel Payment Sclutions
Key Management

Secura Accaptance Settings
Webhook Settings

Unitied Chackout

@ Account Managemeant

Enable Click to Pay

Decrypted payment credentials ENABLED

Configure your Unified Checkout prefile to support decrypted payment credentials
for use beyond our ecosystem, This is a required step when using the Click to Pay
Drop-in Ul to process paymant on another gateway.

Your key must be unique and in the JSON web key (JWK) format, Paste your JWK code
in the text fisld below and click Save to upload key to your account. To edit or ramove
after saving, ellek Edit, make your changaes, and than click Save,

JWK coda Input

{
Uty "REAY,
“una™ "eng",
Ukid™ "20231013-ape ~walver",
oy
“laGhBpk|AWBmTmonKIYW_sFEERCgWTY2xk SINOYUPtKQEINBLeHIR TamBAI0ORr WY
TriveSaFaOM2yOF siB|XzdSphavrknMaut2GmaS0bOVaUcRylYBru|KCdgBURUZ4yBEBrS
nCWygfUyvEMalkdzk=Nxsy_nure3WydSOkkyYod ZJb2V THVRFK raH=
VESSktSe_ FUs3ox] TBwlGX4e2baVec hTIVHO _aAdTdveAngaxCSIGRDNeBog23riZ Xy
kdXwGeBkrvVSyZHTp|@ytzD3weBmWkhkWmCHCNZRpaSo Dy yYB2ROWhETfzhy G XaziTM
daHua=Nedbl_yPETS2MIxw".
“a' “AGQAR"
}

To enable Click to Pay on Unified Checkout, you must first register Click to Pay. This process sends
the appropriate information to the digital payment systems and registers your page with each

system.

Enable Click to Pay for Unified Checkout in the Business Center. Click to Pay is listed as an available
digital payment method offered by Unified Checkout.

Digital Accept Secure Integration | Click to Pay Drop-In Ul | 175

Enabling Click to Pay

Click to Pay is a digital payment solution that allows customers to pay with their preferred card
network and issuer without entering their card details on every website. Customers can use Visa,
Mastercard, and American Express cards to streamline their purchase experience. Click to Pay
provides a fast, secure, and consistent checkout experience across devices and browsers.

Follow these steps to enable in Click to Pay on Unified Checkout:
1. Navigate to Payment Configuration > Unified Checkout.
2. In the Click to Pay section, click Set Up.
3. Enter your business name and website URL.

4. Click Submit.
You can now accept digital payments with Click to Pay.

Digital Accept Secure Integration | Click to Pay Drop-In Ul | 176

Manage Permissions

Portfolio administrators can set permissions for new or existing Business Center user roles for
Unified Checkout. Administrators retain full read and write permissions. They enable you to regulate
access to specific pages and specify who can access, view, or amend digital products within Unified
Checkout.

Portfolio administrators must apply the appropriate user role permission for any existing or newly
created Business Center user roles for Unified Checkout. For information on managing permissions
as a portfolio administrator, see Managing Permissions as a Portfolio Administrator (on page 105).

If you are a transacting merchant, you might find that your permissions are restricted. If your
permissions are restricted, a message appears indicating that you do not have access, or buttons
might appear gray. To make changes to your digital products within Unified Checkout that have
restricted permissions, contact your portfolio administrator's customer support representative. For
more information, see Managing Permissions as a Direct Merchant (on page 104).

Digital Accept Secure Integration | Click to Pay Drop-In Ul | 177

Managing Permissions as a Direct Merchant

Follow these steps to configure and manage user permissions in the Business Center for Unified
Checkout as a direct merchant:

1. On the left navigation panel, navigate to Account Management.
2. Click Roles to display a list of your user roles.

3. Click the pencil icon next to the user role that you want to update.
4. Click Payment Configuration Permission.

5. Select the relevant permission for the specific user role you are editing. You can select from
these Unified Checkout permissions:

o Unified Checkout View

o Unified Checkout Manage

Important: If you are a transacting merchant without view permissions, Unified
Checkout will still appear on the navigation bar, however, a no access message appears
when you access Unified Checkout.

If you are a transacting merchant with view permissions but not management

permissions, you can access the Unified Checkout screens and view the different
payment methods configurations, however, you cannot edit or enroll new products.

Digital Accept Secure Integration | Click to Pay Drop-In Ul | 178

Managing Permissions as a Portfolio Administrator

Follow these steps to configure and manage user permissions in the Business Center for Unified
Checkout as a portfolio administrator:

1. On the left navigation panel, navigate to Account Management.
2. Click Roles to see a list of your user roles.

3. Click the pencil icon next to the user role that you want to update.
4. Click Payment Configuration Permission.

5. Select the relevant permission for the specific user role you are editing. You can choose from
these Unified Checkout permissions:

o Unified Checkout View
o Unified Checkout Manage
o Unified Checkout Portfolio View (available for portfolio users only)

o Unified Checkout Portfolio Manage (available for portfolio users only)

Important: If all permissions are left unselected, the user has restricted permission. A
no access message appears when the user tries to access the Unified Checkout digital
product enablement pages. The user is advised to contact a customer representative.

If a portfolio user has view permissions and does not have a management role, they

can access the Unified Checkout pages, but they cannot modify toggles for different
digital payments.

Digital Accept Secure Integration | Click to Pay Drop-In Ul | 179

Unified Checkout Ul

Completing a payment with Unified Checkout requires the customer to navigate through a sequence
of interfaces. This section includes examples of the interfaces that your customers can expect when

completing a payment with Click to Pay.

Digital Accept Secure Integration | Click to Pay Drop-In Ul | 180

Click to Pay Ul

941 all -

& visa.com

Order Summary

Subtotal (2 items) $116.00
Shipping 0,00
Estimated tax (98074) $10.00
Order Total $126.00

Checkout with card

v EEe D =

Click to Pay loader animation

941 all F -

& visa.com

Order Summary

subtotal (2 tems) $116.00
Shipping £0.00
Esumated tax (HE074) $10.00
Order Total $126.00

Checkout with card

& Click to Pay has faund your linked cards (2]

v g BEED e 0 =

Click to Pay recognized user

ﬁ Secure dhackout x

& Contact Details

Jjehn.doefemail.com Edit
(425) 242 - 4242

© Payment Details [» |5

© M wisa o
o BB wisa 000

Wora cards

Pay with selected card

Lise & different card
@ Shipping Details

'@ Review and Confirm

ﬂ Secire chegkout x

& Contact Details

Jjehn.doefemail.com Edit
(425) 2424242

Q Payment Details C# (8
VISA +3342, Exp 06/29 Switch Card

1903 Frontier Rd
Austin, TH 78636

© shipping Details
ﬂ £ame as billing address

John Doe
19032 Frontier Rd
Austin, TH TEG36

Continue

@ Review and Confirm

ﬁ Sacure dheckoit

& Contact Details

Jjohn.doe@email.com
(425) 2424242

@& payment Details (|5
VISA 8342, Exp 06/28

1903 Frontier Rd
Austin, T 78636

0 Shipping Details
John Doe
1903 Frontier Rd
Austin, TH 78636

@ Rreview and Confirm

Please review and confirm your payment
information before you continue.

Edit

Switch Card

Edit

Click to Pay saved cards

Click to Pay saved cards

Digital Accept Secure Integration | Click to Pay Drop-In Ul | 181

Review screen

JSON Web Tokens

JSON Web Tokens (JWTs) are digitally signed JSON objects based on the open standard RFC 7519.
These tokens provide a compact, self-contained method for securely transmitting information
between parties. These tokens are signed with an RSA-encoded public/private key pair. The
signature is calculated using the header and body, which enables the receiver to validate that the
content has not been tampered with. Token-based applications are best for applications that use
browser and mobile clients.

A JWT takes the form of a string, consisting of three parts separated by dots:

* Header
* Payload

« Signature

This example shows a JWT:

XXXXX.YYYYY.Z22222

Supported Countries for Click to Pay
Click to Pay is supported in these countries:

* Argentina

* Australia

* Austria

* Brazil

* Canada

* China

* Colombia

* Costa Rica

* Czech Republic
» Denmark

* Dominican Republic

Digital Accept Secure Integration | Click to Pay Drop-In Ul | 182

https://datatracker.ietf.org/doc/html/rfc7519

* Ecuador

» El Salvador
* Finland

* France

* Germany

* Honduras

* Hong Kong
* Hungary

* India

* Indonesia

* Ireland

* [taly

* Jordan

* Kuwait

» Malaysia

* Mexico

* Netherlands
* New Zealand
* Nicaragua

* Norway

* Panama

* Paraguay

* Peru

* Poland

* Qatar

* Saudi Arabia

* Singapore

Digital Accept Secure Integration | Click to Pay Drop-In Ul | 183

* Slovakia

* South Africa

* Spain

* Sweden

* Switzerland

* Ukraine

* United Arab Emirates
* United Kingdom

* United States

* Uruguay

Digital Accept Secure Integration | Click to Pay Drop-In Ul | 184

Supported Locales

The locale field within the capture context request consists of an ISO 639 language code, an
underscore (_), and an [SO 3166 region code. The locale controls the language in which the
application is rendered. The following locales are supported:

e ar_AE

» ca_ES

*cs_CZ

» da_DK
» de_AT
» de_DE
*el_GR

* en_AU
* en_CA
* en_GB
*en_[E

*en_NZ
*en_US
*es_AR
* es_CL

*es_CO
* es_ES

* es_MX
*es_PE

* es_US

* fi_FI

* fr CA

» fr FR

Digital Accept Secure Integration | Click to Pay Drop-In Ul | 185

* he IL
« hr HR
* hu_HU
id_ID

« it IT

*ja P
 km_KH
* ko_KR
*]lo LA
*ms_MY
*nb_NO
*nl_ NL
* pl_PL
* pt BR
* ru_RU
» sk_SK
*sv_SE
» th_TH
 tI_PH

* tr_TR
*vi_VN
* zh_CN
zh HK
* zh MO
* zh_SG

e zh TW

Digital Accept Secure Integration | Click to Pay Drop-In Ul | 186

Processing Authorizations with a Transient Token

After you validate the transient token, you can use it in place of the PAN with payment services for 15
minutes.

Authorization with a Transient Token

This section provides the minimal set of information required to perform a successful authorization
with a transient token that is generated by the Flex API.

Endpoint
Production: POST https://api.cybersource.com/pts/v2/payments

Test: POST https://apitest.cybersource.com/pts/v2/payments

Required Field for an Authorization with a Transient Token

tokenInformation.transientTokenJwt

Digital Accept Secure Integration | Processing Authorizations with a Transient Token | 187

https://developer.cybersource.com/docs/cybs/en-us/api-fields/reference/all/rest/api-fields/token-info-aa/token-info-transient-token-jwt.html

REST Interactive Example: Authorization with a Transient Token
Live Console URL: https://developer.cybersource.com/api-reference-assets/

index.html#payments_payments_process-a-payment_samplerequests-dropdown_payment-with-flex-
token_liveconsole-tab-request-body

REST Example: Authorization with a Transient Token
Endpoint:
* Production: POST https://api.cybersource.com/pts/v2/payments

» Test: POST https://apitest.cybersource.com/pts/v2/payments

Request

Important: The transient token may already contain information such as billing address and
total amount. Any fields included in the request will supersede the information contained in
the transient token.

"tokenInformation": {

"transientTokenJwt": "eyJraWQiOiIwMFN2SWFHSWZ5YXc40TdyRGVHOWVGZE9ES2FDS2MxcSIsImFsZyI6Il
JTMjU2In@.eyJpc3MiOiJGbGVALZzAWIiwiZXhwIjoxNFEONzkyNTQOLCIOeXB1lIjoiYXBpLTAUMS4AwIiwiaWFOIjox
NJjEONzkxNjQOLCIqdGkiOiIXRDBWMzFQMUtMRTNXNINWSkIZVE@AVUCXWEQYSO1PRUhIV1dBSURPKhLNjJISFQXUVE
1INjAzRKkM3NjA2MD1DINn®@.FrN1ytYcpQkn8TtafyFZnl3dV3uulXecDJ4TRIVZN-jpNbamcluAKVZ1zfdhbkrB6aNVi
ECSvjZrbEhDKCKHCG8IjChz17Kg642RWtelLkWz30iofgQqFfzTugq41sDhlIgB-UatveU 2ukPxLY187EX9ytpx4zC3J
Vmj6zGqdNP3g35Q5y59culLQYxhRLk7WVXx9BUgW85t120HaajEc25tS1FwH3jDOfjAC8mu2MEk -Ewe-ukZ70Ce7Zaq4
cibg UTRx7_S2c4IUmRFS3wikS1Vm5bpvcKLrok 8b9YnddIzp@Op@JOCjXC _nuofQT7_x_-CQayx2czEOkD53HeNYC
5hQ"

}

Response to Successful Request

" links": {
"authReversal": {
"method": "POST",
"href": "/pts/v2/payments/6826225725096718703955/reversals”

Digital Accept Secure Integration | Processing Authorizations with a Transient Token | 188

https://developer.cybersource.com/api-reference-assets/index.html#payments_payments_process-a-payment_samplerequests-dropdown_payment-with-flex-token_liveconsole-tab-request-body
https://developer.cybersource.com/api-reference-assets/index.html#payments_payments_process-a-payment_samplerequests-dropdown_payment-with-flex-token_liveconsole-tab-request-body
https://developer.cybersource.com/api-reference-assets/index.html#payments_payments_process-a-payment_samplerequests-dropdown_payment-with-flex-token_liveconsole-tab-request-body

})
"self": {
"method": "GET",
"href": "/pts/v2/payments/6826225725096718703955"
})
"capture": {
"method": "POST",
"href": "/pts/v2/payments/6826225725096718703955/captures"”

}s

"clientReferenceInformation”: {
"code": "TC50171_3"
}J
"id": "6826225725096718703955",
"orderInformation": {
"amountDetails": {
"authorizedAmount": "102.21",

"currency": "USD"
}
¥
"paymentAccountInformation”: {
"card": {
"type": "@01"
}
¥

"paymentInformation": {
"tokenizedCard": {

"type": "@01"
}s
"card": {

"type": "@01"
}s

"customer": {
"id": "AAE3DD3DED844001E05341588EOADOD6"

}s
"pointOfSaleInformation": {

"terminalId": "111111"
}J
"processorInformation”: {
"approvalCode": "888888",
"networkTransactionId": "123456789619999",
"transactionId": "123456789619999",
"responseCode": "100",
"avs": {
"code": "X",
"codeRaw": "I1"

}s

Digital Accept Secure Integration | Processing Authorizations with a Transient Token | 189

"reconciliationId": "68450467YGMSJY18",
"status": "AUTHORIZED",
"submitTimeUtc": "2023-04-27T719:09:32Z"

}

Authorization and Creating TMS Tokens with a Transient Token

This section provides the minimal information required in order to perform a successful
authorization and create TMS tokens (customer, payment instrument, and shipping address) with a
transient token.

Endpoint
Production: POST https://api.cybersource.com/pts/v2/payments

Test: POST https://apitest.cybersource.com/pts/v2/payments

Required Fields for an Authorization and Creating TMS Tokens with a

Transient Token
orderInformation.amountDetails.currency
orderInformation.amountDetails.totalAmount
orderInformation.billTo.address1
orderInformation.billTo.administrativeArea
orderInformation.billTo.country
orderInformation.billTo.email
orderInformation.billTo.firstName
orderInformation.billTo.lastName
orderInformation.billTo.locality
orderInformation.billTo.postalCode
orderInformation.shipTo.address1
orderInformation.shipTo.administrativeArea

Digital Accept Secure Integration | Processing Authorizations with a Transient Token | 190

https://developer.cybersource.com/docs/cybs/en-us/api-fields/reference/all/rest/api-fields/order-info-aa/order-info-amount-details-currency.html
https://developer.cybersource.com/docs/cybs/en-us/api-fields/reference/all/rest/api-fields/order-info-aa/order-info-amount-details-total-amount.html
https://developer.cybersource.com/docs/cybs/en-us/api-fields/reference/all/rest/api-fields/order-info-aa/order-info-bill-to-address1.html
https://developer.cybersource.com/docs/cybs/en-us/api-fields/reference/all/rest/api-fields/order-info-aa/order-info-bill-to-admin-area.html
https://developer.cybersource.com/docs/cybs/en-us/api-fields/reference/all/rest/api-fields/order-info-aa/order-info-bill-to-country.html
https://developer.cybersource.com/docs/cybs/en-us/api-fields/reference/all/rest/api-fields/order-info-aa/order-info-bill-to-email.html
https://developer.cybersource.com/docs/cybs/en-us/api-fields/reference/all/rest/api-fields/order-info-aa/order-info-bill-to-first-name.html
https://developer.cybersource.com/docs/cybs/en-us/api-fields/reference/all/rest/api-fields/order-info-aa/order-info-bill-to-last-name.html
https://developer.cybersource.com/docs/cybs/en-us/api-fields/reference/all/rest/api-fields/order-info-aa/order-info-bill-to-locality.html
https://developer.smartpayfuse.barclaycard/docs/barclays/en-us/api-fields/reference/all/rest/api-fields/order-info-aa/order-info-bill-to-postal-code.html
https://developer.cybersource.com/docs/cybs/en-us/api-fields/reference/all/rest/api-fields/order-info-aa/order-info-shipto-address1.html
https://developer.cybersource.com/docs/cybs/en-us/api-fields/reference/all/rest/api-fields/order-info-aa/order-info-shipto-administrative-area.html

orderInformation.shipTo.country
orderInformation.shipTo.firstName
orderInformation.shipTo.lastName
orderInformation.shipTo.localityorderInformation.shipTo.locality
orderInformation.shipTo.postalCode

processingInformation.actionList
Set this field to TOKEN_CREATE.

processingInformation.actionTokenTypes
Set to one of the following values:

® customer
* paymentInstrument

* shippingAddress

tokenInformation.transientTokenJwttokenInformation.transientTokenJwt

Digital Accept Secure Integration | Processing Authorizations with a Transient Token | 191

https://developer.cybersource.com/docs/cybs/en-us/api-fields/reference/all/rest/api-fields/order-info-aa/order-info-shipto-country.html
https://developer.cybersource.com/docs/cybs/en-us/api-fields/reference/all/rest/api-fields/order-info-aa/order-info-shipto-first-name.html
https://developer.cybersource.com/docs/cybs/en-us/api-fields/reference/all/rest/api-fields/order-info-aa/order-info-shipto-last-name.html
https://developer.cybersource.com/docs/cybs/en-us/api-fields/reference/all/rest/api-fields/order-info-aa/order-info-shipto-locality.html
https://developer.cybersource.com/docs/cybs/en-us/api-fields/reference/all/rest/api-fields/order-info-aa/order-info-shipto-postal-code.html
https://developer.cybersource.com/docs/cybs/en-us/api-fields/reference/all/rest/api-fields/processing-info_/processing-info-action-list.html
https://developer.cybersource.com/docs/cybs/en-us/api-fields/reference/all/rest/api-fields/reference/all/rest/api-fields/processing-info-aa/processing-info-action-token-types.html
https://developer.cybersource.com/docs/cybs/en-us/api-fields/reference/all/rest/api-fields/token-info-aa/token-info-transient-token-jwt.html
https://developer.smartpayfuse.barclaycard/docs/barclays/en-us/api-fields/reference/all/rest/api-fields/token-info-aa/token-info-transient-token-jwt.html

REST Interactive Example: Authorization and Creating TMS Tokens
with a Transient Token

Live Console URL: https://developer.cybersource.com/api-reference-assets/
index.html#payments_payments_process-a-payment_samplerequests-dropdown_payment-with-flex-
token-create-permanent-tms-token_liveconsole-tab-request-body

REST Example: Authorization and Creating TMS Tokens with a
Transient Token

Endpoint: POST https://api.cybersource.com/pts/v2/payments

"clientReferenceInformation”: {

"code": "TC50171_3"

}J
"processingInformation": {

"actionList": [
"TOKEN_CREATE"

])

"actionTokenTypes": [
"customer",
"paymentInstrument”,
"shippingAddress"

]
}s

"orderInformation": {
"amountDetails": {
"totalAmount": "102.21",

"currency": "USD"

})

"pbillTo": {
"firstName": "John",
"lastName": "Doe",
"address1": "1 Market St",
"locality": "san francisco",
"administrativeArea": "CA",
"postalCode": "94105",
"country": "US",
"email": "test@cybs.com",
"phoneNumber": "4158880000"

})

"shipTo": {
"firstName": "John",
"lastName": "Doe",

"address1": "1 Market St",

Digital Accept Secure Integration | Processing Authorizations with a Transient Token | 192

https://developer.cybersource.com/api-reference-assets/index.html#payments_payments_process-a-payment_samplerequests-dropdown_payment-with-flex-token-create-permanent-tms-token_liveconsole-tab-request-body
https://developer.cybersource.com/api-reference-assets/index.html#payments_payments_process-a-payment_samplerequests-dropdown_payment-with-flex-token-create-permanent-tms-token_liveconsole-tab-request-body
https://developer.cybersource.com/api-reference-assets/index.html#payments_payments_process-a-payment_samplerequests-dropdown_payment-with-flex-token-create-permanent-tms-token_liveconsole-tab-request-body

"locality": "san francisco",
"administrativeArea": "CA",
"postalCode": "94105",
"country": "US"
}
s

"tokenInformation": {

"transientTokenJwt": "eyJraWQiOiIwMFN2SWFHSWZ5YXc40TdyRGVHOWVGZE9ES2FDS2MxcSIsImFsZyI6Il
JTMjU2In@.eyJpc3MiOiJGbGVALZzAWIiwiZXhwIjoxNFEONzkyNTQOLCIOeXB1lIjoiYXBpLTAUMS4AwIiwiaWFOIjox
NJjEONzkxNjQOLCIqdGkiOiIXRDBWMzFQMUtMRTNXNINWSkIZVE@AVUCXWEQYSO1PRUhIV1dBSURPKhLNjJISFQXUVE
1INjAzRKkM3NjA2MD1DINn®@.FrN1ytYcpQkn8TtafyFZnl3dV3uulXecDJ4TRIVZN-jpNbamcluAKVZ1zfdhbkrB6aNViW
ECSvjZrbEhDKCKHCG8IjChz17Kg642RWtelLkWz30iofgQqFfzTugq41sDhlIgB-UatveU 2ukPxLY187EX9ytpx4zC3J
Vmj6zGqdNP3g35Q5y59culLQYxhRLk7WVXx9BUgW85t120HaajEc25tS1FwH3jDOfjAC8mu2MEk -Ewe-ukZ70Ce7Zaq4
cibg UTRx7_S2c4IUmRFS3wikS1Vm5bpvcKLrok 8b9YnddIzp@p@JOCjXC _nuofQT7_x_-CQayx2czEOkD53HeNYC
5hQ"

}

Digital Accept Secure Integration | Processing Authorizations with a Transient Token | 193

Successful Response

" links": {
"authReversal": {
"method": "POST",
"href": "/pts/v2/payments/6826220442936119603954/reversals"”

}s
"self": {

"method": "GET",

"href": "/pts/v2/payments/6826220442936119603954"
}s

"capture": {
"method": "POST",
"href": "/pts/v2/payments/6826220442936119603954/captures"”

})

"clientReferenceInformation”: {
"code": "TC50171_ 3"

})

"id": "6826220442936119603954",

"orderInformation": {
"amountDetails": {

"authorizedAmount": "102.21",

"currency": "USD"
}
})
"paymentAccountInformation”: {
"card": {
"type": "@01"
}
})

"paymentInformation": {
"tokenizedCard": {

Iltypell : "061"
¥
"card": {

Iltypell : "061"
}

})

"pointOfSaleInformation": {
"terminalId": "111111"

})

"processorInformation": {
"approvalCode": "888888",
"networkTransactionId": "123456789619999",
"transactionId": "123456789619999",
"responseCode": "100",
"avs": {

Digital Accept Secure Integration | Processing Authorizations with a Transient Token | 194

"code": "X",
"codeRaw": "I1"

¥
"reconciliationId": "68449782YGMSJIXND",

"status": "AUTHORIZED",
"submitTimeUtc": "2023-04-27T19:00:44Z",
"tokenInformation": {
"instrumentidentifierNew": false,
"instrumentIdentifier": {
"state": "ACTIVE",
"id": "7010000000016241111"
¥
"shippingAddress": {
"id": "FA56F3248492C901E053A2598DOA99E3"
¥
"paymentInstrument"”: {
"id": "FAS6E8725BO6A553E053A2598D0A2105"
¥
"customer": {
"id": "FA56DA959B6AC8FBEO53A2598D0OAD183"

Digital Accept Secure Integration | Processing Authorizations with a Transient Token | 195

VISA Platform Connect: Specifications and
Conditions for Resellers/Partners

The following are specifications and conditions that apply to a Reseller/Partner enabling its
merchants through Cybersource for Visa Platform Connect (“VPC”) processing. Failure to meet any
of the specifications and conditions below is subject to the liability provisions and indemnification
obligations under Reseller/Partner’s contract with Visa/Cybersource.

1. Before boarding merchants for payment processing on a VPC acquirer’s connection, Reseller/
Partner and the VPC acquirer must have a contract or other legal agreement that permits
Reseller/Partner to enable its merchants to process payments with the acquirer through the
dedicated VPC connection and/or traditional connection with such VPC acquirer.

2. Reseller/Partner is responsible for boarding and enabling its merchants in accordance with the
terms of the contract or other legal agreement with the relevant VPC acquirer.

3. Reseller/Partner acknowledges and agrees that all considerations and fees associated with
chargebacks, interchange downgrades, settlement issues, funding delays, and other processing
related activities are strictly between Reseller and the relevant VPC acquirer.

4. Reseller/Partner acknowledges and agrees that the relevant VPC acquirer is responsible for
payment processing issues, including but not limited to, transaction declines by network/
issuer, decline rates, and interchange qualification, as may be agreed to or outlined in the
contract or other legal agreement between Reseller/Partner and such VPC acquirer.

DISCLAIMER: NEITHER VISA NOR CYBERSOURCE WILL BE RESPONSIBLE OR LIABLE FOR
ANY ERRORS OR OMISSIONS BY THE VISA PLATFORM CONNECT ACQUIRER IN PROCESSING
TRANSACTIONS. NEITHER VISA NOR CYBERSOURCE WILL BE RESPONSIBLE OR LIABLE FOR
RESELLER/PARTNER BOARDING MERCHANTS OR ENABLING MERCHANT PROCESSING IN
VIOLATION OF THE TERMS AND CONDITIONS IMPOSED BY THE RELEVANT VISA PLATFORM
CONNECT ACQUIRER.

Digital Accept Secure Integration | VISA Platform Connect: Specifications and Conditions for Resellers/Partners | 196

	Digital Accept Secure Integration
	Contents
	Recent Revisions to This Document
	24.03
	24.02
	24.01
	23.05
	23.04
	23.03
	23.02

	About This Guide
	Audience and Purpose
	Conventions
	Related Documentation
	Customer Support

	Introducing Digital Accept Secure Integration Product Suite
	Unified Checkout
	Microform Integration
	Flex API
	Digital Accept Product Comparison

	Flex API
	How It Works
	Customer Context
	Establishing a Payment Session with a Capture Context
	Capture Context Fields
	Endpoint
	REST Example: Establishing a Payment Session with a Capture Context

	Validating the JSON Web Token
	Retrieving the Public Key ID
	Decrypting the JWT Header

	Retrieving the Public Key
	JAVA Example: Validating the Transient Token

	Populating the JSON Web Token with Customer Information
	Constructing the JSON Payload
	Generating a JSON Web Encryption Data Object
	Populating the Token Request

	Microform Integration v2
	How It Works
	PCI Compliance
	Browser Support
	Getting Started
	Creating the Server-Side Context
	Validating the Capture Context
	Resource
	Example

	Setting Up the Client Side
	Web Page
	Mobile Application
	Transient Token Time Limit
	Transient Token Response Format
	Validating the Transient Token
	Using the Transient Token

	Getting Started Examples
	Example: Node.js REST Code Snippet
	Example: Checkout Payment Form
	Example: Creating the Pay Button with Event Listener
	Example: Customer-Submitted Form
	Example: Token Payload
	Example: Token Payload with Multiple Card Types
	Example: Capture Context Public Key
	Example: Validating the Transient Token
	Example: Authorization with a Transient Token Using the REST API

	Styling
	General Appearance
	Explicitly Setting Container Height
	Managed Classes
	Input Field Text
	Supported Properties

	Events
	Subscribing to Events
	Card Detection
	Autocomplete

	Security Recommendations
	PCI DSS Guidance
	Self Assessment Questionnaire
	Storing Returned Data

	API Reference
	Class: Field
	Methods

	Module: FLEX
	Methods

	Class: Microform
	Methods

	Class: MicroformError
	Members

	Events
	Subscribing to Events
	Card Detection
	Autocomplete

	Global
	Type Definitions

	Unified Checkout
	Unified Checkout Flow
	Enabling Unified Checkout in the Business Center

	Server-Side Set Up
	Capture Context

	Client-Side Set Up
	Loading the JavaScript Library and Invoking the Accept Function
	JavaScript Example: Initializing the SDK

	Adding the Payment Application and Payment Acceptance
	JavaScript Example: Setting Up with Full Sidebar
	JavaScript Example: Setting Up with the Embedded Component

	Transient Tokens
	Transient Token Format
	Token Verification

	Authorizations with a Transient Token
	Endpoint
	Required Field for an Authorization with a Transient Token
	REST Example: Authorization with a Transient Token
	Request
	Response to Successful Request

	Capture Context API
	Endpoint
	Required Fields for Requesting the Capture Context
	REST Example: Requesting the Capture Context
	Request
	Successful Encrypted JWT Response to Request
	Decrypted Capture Context Header
	Decrypted Capture Context Body with Selected Fields

	Payment Details API
	Endpoint
	Required Field for Retrieving Transient Token Payment Details
	REST Example: Retrieving Transient Token Payment Details
	Request
	Response to Successful Request

	Unified Checkout Configuration
	Enable Digital Payments
	Enabling Click to Pay
	Enrolling in Google Pay

	Manage Permissions
	Managing Permissions as a Direct Merchant
	Managing Permissions as a Portfolio Administrator

	Unified Checkout UI
	Click to Pay UI
	Google Pay UI
	Manual Payment Entry UI
	Pay with Bank Account UI
	Paze UI

	JSON Web Tokens
	Supported Countries for Digital Payments
	Supported Countries for Digital Payments A-D
	Supported Countries for Digital Payments E-K
	Supported Countries for Digital Payments L-R
	Supported Countries for Digital Payments S-Z

	Supported Locales
	Reason Codes

	Click to Pay Drop-In UI
	Click to Pay Customer Workflows
	Recognized Click to Pay Customer
	Unrecognized Click to Pay Customer
	Guest Customer

	Click to Pay Drop-In UI Flow
	Enabling Unified Checkout in the Business Center

	Server-Side Set Up
	Capture Context

	Client-Side Set Up
	Loading the JavaScript Library and Invoking the Accept Function
	JavaScript Example: Initializing the SDK

	Adding the Payment Application and Payment Acceptance
	JavaScript Example: Setting Up with Full Sidebar
	JavaScript Example: Setting Up with the Embedded Component

	Transient Tokens
	Transient Token Format
	Token Verification

	Capture Context API
	Endpoint
	Required Fields for Requesting the Capture Context
	REST Example: Requesting the Capture Context
	Successful Encrypted JWT Response to Request
	Decrypted Capture Context Header
	Decrypted Capture Context Body with Selected Fields

	Payment Details API
	Endpoint
	Required Field for Retrieving Transient Token Payment Details
	REST Example: Retrieving Transient Token Payment Details
	Request
	Response to Successful Request

	Payment Credentials API
	Endpoint
	Example: Sample Decrypted JWE Data Object
	Required Field for Retrieving Payment Credentials
	REST Example: Retrieving Payment Credentials
	Request
	Encrypted Response to Successful Request
	Decrypted Response to Successful Request

	Unified Checkout Configuration
	Upload Your Encryption Key
	Generate a Public Private Key Pair
	Uploading Your Key Pair

	Enable Click to Pay
	Enabling Click to Pay

	Manage Permissions
	Managing Permissions as a Direct Merchant
	Managing Permissions as a Portfolio Administrator

	Unified Checkout UI
	JSON Web Tokens
	Supported Countries for Click to Pay
	Supported Locales

	Processing Authorizations with a Transient Token
	Authorization with a Transient Token
	Endpoint
	Required Field for an Authorization with a Transient Token
	REST Interactive Example: Authorization with a Transient Token
	REST Example: Authorization with a Transient Token
	Request
	Response to Successful Request

	Authorization and Creating TMS Tokens with a Transient Token
	Endpoint
	Required Fields for an Authorization and Creating TMS Tokens with a Transient Token
	REST Interactive Example: Authorization and Creating TMS Tokens with a Transient Token
	REST Example: Authorization and Creating TMS Tokens with a Transient Token
	Successful Response

	VISA Platform Connect: Specifications and Conditions for Resellers/Partners

