
SOAP Toolkits for Web Services
Developer Guide

CyberSource Contact Information

For general information about our company, products, and services, go to http://www.cybersource.com.

For sales questions about any CyberSource Service, email sales@cybersource.com or call 650-432-7350
or 888-330-2300 (toll free in the United States).

For support information about any CyberSource Service, visit the Support Center: 
http://www.cybersource.com/support

Copyright
© July 2020 CyberSource Corporation. All rights reserved. CyberSource Corporation (“CyberSource”) furnishes this document and
the software described in this document under the applicable agreement between the reader of this document (“You”) and
CyberSource (“Agreement”). You may use this document and/or software only in accordance with the terms of the Agreement. Except
as expressly set forth in the Agreement, the information contained in this document is subject to change without notice and therefore
should not be interpreted in any way as a guarantee or warranty by CyberSource. CyberSource assumes no responsibility or liability
for any errors that may appear in this document. The copyrighted software that accompanies this document is licensed to You for use
only in strict accordance with the Agreement. You should read the Agreement carefully before using the software. Except as
permitted by the Agreement, You may not reproduce any part of this document, store this document in a retrieval system, or transmit
this document, in any form or by any means, electronic, mechanical, recording, or otherwise, without the prior written consent of
CyberSource.

Restricted Rights Legends
For Government or defense agencies. Use, duplication, or disclosure by the Government or defense agencies is subject to
restrictions as set forth the Rights in Technical Data and Computer Software clause at DFARS 252.227-7013 and in similar clauses in
the FAR and NASA FAR Supplement.

For civilian agencies. Use, reproduction, or disclosure is subject to restrictions set forth in subparagraphs (a) through (d) of the
Commercial Computer Software Restricted Rights clause at 52.227-19 and the limitations set forth in CyberSource Corporation's
standard commercial agreement for this software. Unpublished rights reserved under the copyright laws of the United States.

Trademarks
Authorize.Net, eCheck.Net, and The Power of Payment are registered trademarks of CyberSource Corporation.

CyberSource, CyberSource Payment Manager, CyberSource Risk Manager, CyberSource Decision Manager, and CyberSource
Connect are trademarks and/or service marks of CyberSource Corporation.

Visa, Visa International, CyberSource, the Visa logo, and the CyberSource logo are the registered trademarks of Visa International in
the United States and other countries. All other trademarks, service marks, registered marks, or registered service marks are the
property of their respective owners.

Revision: July 2020

http://www.cybersource.com
mailto:sales@cybersource.com
http://www.cybersource.com/support/

 | i

Contents

Section 1 Recent Revisions to This Document 1

Section 2 Configuring SOAP Toolkits for Web Services 2

Supported Toolkits 2

Destination URLs for SOAP Messages 3

Transaction Key 3

SOAP Message Sample 4

Section 3 Constructing SOAP with PHP 5.2.1 6

Installing PHP on Windows 7

Installing PHP on Linux 7

Building and Running the Sample 8

Modifying Your Script 8

Section 4 Constructing SOAP with .NET 2.0 and WSE 3.0 10

Preparing Your Application 10

Sending Requests to CyberSource 16

Building the Sample and Testing the Net Client 18

Modifying the .NET Client and Code 19

Section 5 Constructing SOAP with .NET 3.0 (WCF) and Later Versions 20

Creating and Testing the .NET 3.0 Client Using Sample Code 20

Modifying the .NET 3.0 Client and Code 22

Section 6 Constructing SOAP with C++ and gSOAP 2.7.9c for Windows 23

Generating the Windows Client Code 23

Building the Windows Client 25

Building the Sample and Testing the Windows Client 32

Modifying the Windows Client and Code 33

July 2020 | ii

Section 7 Constructing SOAP with C++ and gSOAP 2.7.9e for Linux 34

Preparing the Linux Development Environment 34

Generating the Linux Client Code 35

Building the Sample and Testing the Linux Client 36

Modifying Linux Client and Code 37

Section 8 Constructing SOAP with C++ and gSOAP 2.7.9d for Mac OS X 38

Preparing the Development Environment 38

Generating the Mac Client Code 39

Building the Sample and Testing the Mac Client 40

Modifying the Mac Client and Code 40

Section 9 Constructing SOAP with Apache Axis and WSS4J 41

Generating and Building the Stubs 42

Building the Sample and Testing the Client 43

Modifying the Client and Code 43

Recent Revisions to This Document | 1

Recent Revisions to This Document

Release Changes

July 2020 Added endpoints and Business Center URLs for India.

February 2020 • Removed Perl and ASP chapters and references.

• Updated links to sample code.

• Changed mentions of .NET 3.0 to .NET 3.0 and later.

January 2016 Fixed the URL for the perl sample code.

September 2015 Updated the production server URL and the test server URL.

August 2015 Changed mentions of .NET 3.0 to .NET 3.0 and later.

Configuring SOAP Toolkits for Web Services | 2

Configuring SOAP Toolkits for Web
Services

SOAP toolkits are for merchants who use the SOAP protocol with a secure authentication
method. With the SOAP toolkits, you do not need to download and configure a
CyberSource client. To use any of the toolkits, your system must support these features:

• HTTPS: HTTP with TSL 1.2 encryption. The CyberSource servers do not support
persistent HTTP connections.

• SOAP 1.1: Version 1.1 of the Simple Object Access Protocol.

• Document/literal (unwrapped): Style of the WSDL used by the CyberSource Web
Services. With this style, the entire content of the SOAP body is defined in a schema.

• UsernameToken: Authentication mechanism specified in WS-Security 1.0. in the
header of the SOAP message.

Supported Toolkits
CyberSource has tested and supports only the toolkits listed below. You can implement a
toolkit on a platform that is not tested or supported, but CyberSource cannot guarantee
that you can use such an implementation with the Web Services.

CyberSource recommends that you use logging only when troubleshooting problems. To
comply with all Payment Card Industry (PCI) and Payment Application (PA) Data Security
Standards regarding the storage of credit card and card verification number data, the logs
that are generated contain only masked credit card and card verification number (CVV,
CVC2, CVV2, CID, CVN) data. For more information about PCI and PA requirements, see
www.visa.com/cisp.

Toolkits Supported Platforms

PHP 5.2.1 Windows, Linux, Solaris

.NET:

.NET 2.0 and WSE 3.0

 .NET 3.0 (WCF) and later

Windows

C++ with gSOAP:

gSOAP 2.7.9c for Windows

gSOAP 2.7.9e for Linux

gSOAP 2.7.9d for Mac OS X

Windows, Linux, Mac OS

Java with Apache Axis and WSS4J Windows, Linux, Solaris

http://www.visa.com/cisp

Configuring SOAP Toolkits for Web Services | 3

Follow these guidelines when working with log files:

• Use debugging temporarily for diagnostic purposes only.

• If possible, use debugging only with test credit card numbers.

• Never store clear text card verification numbers.

• Delete the log files as soon as you no longer need them.

• Never email personal and account information, such as customers' names, addresses, card
or check account numbers, and card verification numbers to CyberSource.

Destination URLs for SOAP Messages
The latest version of the API is located at
https://ics2wsa.ic3.com/commerce/1.x/transactionProcessor or in India
https://ics2wsa.in.ic3.com/commerce/1.x/transactionProcessor.

When constructing your SOAP messages, use the following target URLs:

• Test environment: https://ics2wstesta.ic3.com/commerce/1.x/transactionProcessor

• Production environment: https://ics2wsa.ic3.com/commerce/1.x/transactionProcessor

• Production environment in India:
https://ics2wsa.in.ic3.com/commerce/1.x/transactionProcessor

1.x is not a placeholder for the version number but an integral part of the URL.

Transaction Key
Context

Before you can send requests for Internet Commerce Suite (ICS) services, you must create a
security key for your CyberSource merchant ID. Use this key to replace the placeholder value for
TRANSACTION_KEY in the code samples.

IMPORTANT: You must use separate transaction keys for the test and production environments.

1 Log in to the Business Center.

• Live transactions: https://ebc2.cybersource.com/ebc2/

• Live transactions in India: https://ebc2.in.cybersource.com/ebc2/

• Test transactions: https://ebctest.cybersource.com/ebc2/

2 On the left navigation pane, click the Payment Configuration icon.

https://ics2wsa.ic3.com/commerce/1.x/transactionProcessor
https://ics2wsa.ic3.in.com/commerce/1.x/transactionProcessor
https://ics2wstesta.ic3.com/commerce/1.x/transactionProcessor
https://ics2wsa.ic3.com/commerce/1.x/transactionProcessor
https://ics2wsa.in.ic3.com/commerce/1.x/transactionProcessor
https://ebc2.cybersource.com/ebc2/
https://ebc2.in.cybersource.com/ebc2/
https://ebctest.cybersource.com/ebc2/

Configuring SOAP Toolkits for Web Services | 4

3 Click Key Management. The Key Management page appears.

4 In the Search toolbar, select the Merchant ID for which you want to create a key.

5 Click Generate Key. The Create Key page appears.

6 Select the type of key that you want to generate.

7 Click Next Step.

8 Select a key type, and generate a new key.

9 Click Submit. The Key Management page appears.

IMPORTANT: Be sure to store the test and production environment transaction keys in
different locations. Be careful not to overwrite a key in the wrong directory.

SOAP Message Sample
Before using this sample, replace N.NN with the current API version and use your merchant ID
and password.


<?xml version="1.0" encoding="UTF-8"?>
<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/">
 <soapenv:Header>
 <wsse:Security soapenv:mustUnderstand="1"
xmlns:wsse="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-s
ecext-1.0.xsd">
 <wsse:UsernameToken>
 <wsse:Username>yourMerchantID</wsse:Username>
 <wsse:Password
Type="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-username-token-pro
file-1.0#PasswordText">yourPassword</wsse:Password>
 </wsse:UsernameToken>
 </wsse:Security>
 </soapenv:Header>
 <soapenv:Body>
 <requestMessage xmlns="urn:schemas-cybersource-com:transaction-data-N.NN">
 <merchantID>yourMerchantID</merchantID>
 <merchantReferenceCode>MRC-123</merchantReferenceCode>
 <billTo>
 <firstName>John</firstName>
 <lastName>Doe</lastName>
 <street1>1295 Charleston Road</street1>
 <city>Mountain View</city>
 <state>CA</state>
 <postalCode>94043</postalCode>
 <country>US</country>
 <email>null@cybersource.com</email>
 </billTo>
 <item id="0">
 <unitPrice>5.00</unitPrice>

Configuring SOAP Toolkits for Web Services | 5

 <quantity>1</quantity>
 </item>
 <item id="1">
 <unitPrice>10.00</unitPrice>
 <quantity>2</quantity>
 </item>
 <purchaseTotals>
 <currency>USD</currency>
 </purchaseTotals>
 <card>
 <accountNumber>4111111111111111</accountNumber>
 <expirationMonth>11</expirationMonth>
 <expirationYear>2020</expirationYear>
 </card>
 <ccAuthService run="true"/>
 </requestMessage>
 </soapenv:Body>
</soapenv:Envelope>

Constructing SOAP with PHP 5.2.1 | 6

Constructing SOAP with PHP 5.2.1
This section describes how to construct SOAP messages to process transactions with
CyberSource.

Before starting this process, download and install the third-party software. CyberSource
tested these versions:

Although the SOAP extension does not have built-in support for Web Services Security,
you can add the required header elements for the UsernameToken information to the
outgoing request. The code in the sample file shows how to extend the SoapClient
class and how to override its __doRequest() method (lines 17 to 49) to insert the
UsernameToken information.

Test the client application with the following Cybersource sample code:
https://github.com/CyberSource/cybersource-soap-toolkit/tree/master/sample_php.

The sample PHP files contain many comments and a sample card authorization. Choose
the file appropriate for you:

• cli-sample.php if you use the command-line interface

• web-sample.php if you use the Web interface

Be sure that you understand the content of the file and that you replace the generic values
of the variables, such as your merchant ID and password, with your own values.

Software Tested Description

• Linux Kernel 2.4

• Windows XP Pro with SP2

• Solaris

Operating system versions tested.

PHP 5.2.1 PHP software. The SOAP extension is provided only in
versions 5.2.1 and later.

libxml2 2.6.23 2.6.11 is the minimum version required by the SOAP
extension.

openssl 0.9.8d SSL library; 0.9.6 is the minimum required version by
the SOAP extension.

https://github.com/CyberSource/cybersource-soap-toolkit/tree/master/sample_php

Constructing SOAP with PHP 5.2.1 | 7

Installing PHP on Windows
Context

If you are running PHP on Windows, your PHP application requires these two extensions: SOAP
and OpenSSL.

1 If an extensions directory is not already present, create an extensions directory in the
php.ini file:

extension_dir ="C:\PHP\extensions"

2 Download the ZIP package from http://www.php.net/downloads.php.

The Windows installer package does not include extensions.

3 Copy php_soap.dll and php_openssl.dll from the package to the extensions
directory.

4 In the extension section of php.ini, add a reference to the DLLs:

extension=php_soap.dll

extension=php_openssl.dll

Installing PHP on Linux
Context

If you are running PHP on Linux, your PHP application requires these three extensions: SOAP,
OpenSSL, and libxml.

1 To find out if your existing PHP application already has these extensions, run this command:

php -i | grep configure

• If the output shows these three extensions, skip Steps 2 and 3, and proceed to Building
and Running the Sample:

--enable-soap

--with-openssl

--with-libxml-dir

http://www.php.net/downloads.php

Constructing SOAP with PHP 5.2.1 | 8

• If the output does not show all three extensions, proceed to Step 2.

IMPORTANT: CyberSource is not responsible for build errors that you might encounter
during Steps 2 and 3.

2 To build your PHP application with the SOAP, OpenSSL, and libxml extensions, navigate to
the directory where the PHP source was installed. Run the configure command with the
three required extensions and any other extension previously included in your PHP
application. For example:

./configure ‘--prefix=your_target_dir’ ‘--enable-soap’
‘--with-libxmldir=your_libxml_dir’ ‘--with-openssl=your_openssl_dir’

3 In the same directory, build and install your application.

make

make install

Building and Running the Sample
Context To test your client, modify the variables in the sample files, and launch the application.

1 In your sample PHP file, replace the variables with your own values:

MERCHANT_ID

TRANSACTION_KEY

Note that the URL for the CyberSource API (WSDL_URL) is set to the test environment and
for a specific version of the API. Always use the most current version of the API.

2 Run the script php <sample PHP file>.

In the reply file, you can see the result of the request and all of the fields that are returned.

Modifying Your Script
After you configure and test your application, you can modify it as needed. Be sure to use separate
transaction keys for the test and production environments.

• To access the test and production environments, use these values for WSDL_URL (line 7):

– Test environment: ics2wstesta.ic3.com

– Production environment: ics2wsa.ic3.com

Constructing SOAP with PHP 5.2.1 | 9

– Production environment in India: ics2wsa.in.ic3.com

• To update the version of the CyberSource API, update the version number in the URL.

• To add or delete API fields, modify the source code.

Constructing SOAP with .NET 2.0 and WSE 3.0 | 10

Constructing SOAP with .NET 2.0 and
WSE 3.0

This section describes how to construct SOAP messages to process transactions with
CyberSource.

Before starting this process, download and install the required third-party software:

Test the client application with the sample code files available from
https://github.com/CyberSource/cybersource-soap-toolkit/tree/master/sample_net_wse.

The sample files, sample_wse30.vb (VB) and sample_wse30.cs (C#), provide the
code to process your transactions. To help understand and use the code, the files contain
many comments and a sample card authorization. Before using the files, be sure to
replace the generic values of the variables with your own.

Preparing Your Application
Context

To test the sample code provided, you must have a console application.

1 Create a new application, or open your existing application in Visual Studio.

2 Right-click the project node and choose WSE Settings 3.0. The app config dialog
box appears. If WSE Settings 3.0 does not appear, proceed as follows:

a Reinstall WSE 3.0 by using the Add or Remove Programs menu.

b In the installer, select Modify and install the Visual Studio Tools option.

c Restart Visual Studio.

d Repeat Steps 1 and 2.

Software Tested Description

Windows XP Pro with SP2 Operating system version tested.

Visual Studio 2005 Includes .NET 2.0.

WSE 3.0 Web Services Enhancements for Microsoft .NET, which
is used to authenticate the user with the
UsernameToken class.

https://github.com/CyberSource/cybersource-soap-toolkit/tree/master/sample_net_wse

Constructing SOAP with .NET 2.0 and WSE 3.0 | 11

3 In the dialog box under the General tab, check Enable this project for Web Services
Enhancements.

Constructing SOAP with .NET 2.0 and WSE 3.0 | 12

4 Click the Policy tab and check Enable Policy. Click Add. The Add or Modify Policy Friendly
Name dialog box appears.

Constructing SOAP with .NET 2.0 and WSE 3.0 | 13

5 In the Add or Modify Policy Friendly Name field, enter CyberSource. If you use a name
other than CyberSource, you must modify the value of the POLICY_NAME variable in the
sample code. Click OK. The WSE Security Settings Wizard appears.

6 In the Do you want to secure a service or a client field, choose Secure a client
application. In the Choose Client Authentication Method field, choose Username. Click
Next.

Constructing SOAP with .NET 2.0 and WSE 3.0 | 14

7 On the next page, Specify Username Token in code is checked by default. If you leave this
default setting your password appears as plain text in the wse3policyCache.config policy.
However, if you specify the username and password in the code, you can retrieve the
password from a database or from any other source. Click Next.

Constructing SOAP with .NET 2.0 and WSE 3.0 | 15

8 Uncheck Enabled WS-Security 1.1 Extensions. Unchecking this option automatically
selects None (rely on transport protection). Click Next.

9 To exit the wizard, click Finish.

10 To save your changes, click OK.

Constructing SOAP with .NET 2.0 and WSE 3.0 | 16

Sending Requests to CyberSource
Context

To add a Web reference to CyberSource, follow these steps:

1 In the Solution Explorer, right-click the project node and choose Add Web Reference.

2 In the Add Web Reference dialog box, in the URL field, enter the URL for CyberSource’s Web
Service:

• Test environment: https://ics2wstesta.ic3.com/commerce/1.x/transactionProcessor

• Production environment: https://ics2wsa.ic3.com/commerce/1.x/transactionProcessor

• Production environment in India:
https://ics2wsa.in.ic3.com/commerce/1.x/transactionProcessor

IMPORTANT: You must use separate transaction keys for the production and test
environments.

3 Click the Go button beside the URL field.

https://ics2wstesta.ic3.com/commerce/1.x/transactionProcessor
https://ics2wsa.ic3.com/commerce/1.x/transactionProcessor
https://ics2wsa.in.ic3.com/commerce/1.x/transactionProcessor

Constructing SOAP with .NET 2.0 and WSE 3.0 | 17

The available server API versions are displayed.

4 To display the content of the most current WSDL, click the top link.

The next step, Step 5, is not required to run the application. However, if you decide to use a
name other than CyberSource, use a name that is not associated with a particular server so
that you can easily change between the test and production servers. In addition, change the
import statement in the sample code using the following format, where myapp is your project
default name space:

import myapp.com.ic3.ics2wstesta;

5 Change the name that is displayed in the Web reference name field to CyberSource. The
Web reference name is used in the name space that you need to import in your code. For
example, if your project's default name space is myapp, and you set the Web reference name
to CyberSource, you will import myapp.CyberSource. Depending on the URL that you

Constructing SOAP with .NET 2.0 and WSE 3.0 | 18

entered in Step 2, the default Web Reference Name in the field on the right side of the window
is either com.ic3.ics2wstesta or com.ic3.ics2wsa.

6 Click Add Reference.

This generates the proxy classes that process the request and the reply.

Building the Sample and Testing the Net Client
Context

To test your client, follow these steps.

1 In sample_wse.cs or sample_wse.vb, modify the values of the following variables:

• MERCHANT_ID

• TRANSACTION_KEY

• LIB_VERSION

• POLICY_NAME

2 Add the sample file to your application.

3 Launch the application.

The reply file contains the request result and all returned fields. When client testing is
finished, write the code to use the client application.

Constructing SOAP with .NET 2.0 and WSE 3.0 | 19

Modifying the .NET Client and Code
After you configure and test your application, you can modify it as needed:

IMPORTANT: You must use separate transaction keys for the test and production environments

• To alternate between the test and production environments, change the host in the URL in
your application or Web configuration file:

– Test environment: ics2wstesta.ic3.com

– Production environment: ics2wsa.ic3.com

– Production environment in India: ics2wsa.in.ic3.com

• To update the version of the CyberSource API, do the following:

– In the Solution Explorer, under the Web References node, click the CyberSource web
reference.

– Update the value of the Web Reference URL to the version that you want to use, such
as 1.86 in this example:
https://ics2wsa.ic3.com/commerce/1.x/transactionProcessor/CyberSourceTransactio
n_1.86.wsdl

– Rebuild your application.

• To add or delete API fields, modify your source code.

Constructing SOAP with .NET 3.0 (WCF) and Later Versions | 20

Constructing SOAP with .NET 3.0
(WCF) and Later Versions

This section describes how to construct SOAP messages with .NET 3.0 and later to
process transactions with CyberSource.

Before starting this process, download and install the required third-party software:

Test the client application with the sample code files available from
https://github.com/CyberSource/cybersource-soap-toolkit/blob/master/sample_wcf.cs.

To help understand and use the code, the files contain many comments and a sample
card authorization. Before using the files, be sure that you replace the generic values of
the variables with your own.

Creating and Testing the .NET 3.0 Client
Using Sample Code
Context

To reach the .NET 3.0 (and later) command shell and create the client, follow these steps:

1 Go to Start > All Programs > Microsoft Windows SDK > CMD Shell.

2 Change directory (cd) to find the sample code (sample_wcf.cs).

3 Generate the proxy classes as follows:

Software Tested Description

Windows XP Pro with SP2 Operating system version tested.

Visual Studio 2005 Includes .NET 2.0.

Microsoft Windows SDK Software Development Kit that contains necessary
tools, such as svcutil.exe.

.NET Framework 3.0 and later Redistributable Package Includes the Windows Communication Foundation.

IMPORTANT: After installing the software, you must
reboot your computer to ensure that svcutil is
recognized as a shell command.

https://github.com/CyberSource/cybersource-soap-toolkit/blob/master/sample_wcf.cs

Constructing SOAP with .NET 3.0 (WCF) and Later Versions | 21

svcutil /config:sample_wcf.exe.config
https://ics2wstesta.ic3.com/commerce/1.x/transactionProcessor/
CyberSourceTransaction_N.NN.wsdl

where

N.NN is the latest server API version. For the latest version, navigate to
https://ics2wstesta.ic3.com/commerce/1.x/transactionProcessor

Two files are generated:

> TheCyberSourceTransactionWS.cs file contains the proxy classes.

> The sample_wcf.exe.config file is the configuration file for your application.

4 In sample_wcf.exe.config, change the security mode from Transport to
TransportWithMessageCredential.

The security element should now read: <security
mode="TransportWithMessageCredential">

5 To write the code to process your transactions, use sample_wcf.cs:

a Add your own values to MERCHANT_ID and TRANSACTION_KEY.

b Build the executable file as follows:

csc /out:sample_wcf.exe /target:exe
/reference:"C:\WINDOWS\Microsoft.NET\Framework\v3.0\Windows
Communication Foundation\System.ServiceModel.dll"
CyberSourceTransactionWS .cs sample_wcf.cs

csc /out:sample_wcf.exe /target:exe
/reference:"C:\WINDOWS\Microsoft.NET\Framework\v3.0\Windows
Communication Foundation\System.ServiceModel.dll"
CyberSourceTransactionWS .cs sample_wcf.cs

The sample_wcf.exe file is created.

6 Run the sample_wcf.exe file.

7 The reply file contains the request result and all returned fields. When client testing is
finished, write the code to use the client application.

https://ics2wstesta.ic3.com/commerce/1.x/transactionProcessor
https://ics2wstesta.ic3.com/commerce/1.x/transactionProcessor

Constructing SOAP with .NET 3.0 (WCF) and Later Versions | 22

Modifying the .NET 3.0 Client and Code
After you configure and test your application, you can modify it as needed:

IMPORTANT: You must use different transaction keys for the test and production environments.

• To alternate between the test and production environments, change the host in the
endpoint address in the configuration file:

– Test environment: ics2wstesta.ic3.com

– Production environment: ics2wsa.ic3.com

– Production environment in India: ics2wsa.in.ic3.com

• To update the version of the CyberSource API, follow Steps 1-4 in the Creating and Testing
the Client Using Sample Code.

• To add or delete API fields, modify the source code.

Constructing SOAP with C++ and gSOAP 2.7.9c for Windows | 23

Constructing SOAP with C++ and
gSOAP 2.7.9c for Windows

This section describes how to construct SOAP messages to process transactions with
CyberSource.

Before starting this process, download and install the required third-party software.
CyberSource tested these versions:

Test the client application with the sample code files available from
https://github.com/CyberSource/cybersource-soap-toolkit/tree/master/sample_gsoap.

To help understand and use the code, the files contain many comments and a sample
card authorization. Before using the files, be sure that you replace the generic values of
the variables with your own.

Generating the Windows Client Code
Context The pre-built wsdl2h tool does not support SSL, so you cannot point the tool
directly to https://ics2wstesta.ic3.com or https://ics2wsa.ic3.com or in India
https://ics2wsa.in.ic3.com.

1 Download the latest WSDL and XSD files to the same directory from the following
URL: https://ics2wsa.ic3.com/commerce/1.x/transactionProcessor or in India
https://ics2wsa.in.ic3.com/commerce/1.x/transactionProcessor

2 Save the files under the following names:

Software Tested Description

Windows XP Pro with SP2 Operating system version tested.

gSOAP 2.7.9c Soap toolkit. Download and unzip the latest win32 ZIP
file from http://sourceforge.net/projects/gsoap2/

OpenSSL 0.9.8d You may use the pre-built package available from
http://www.slproweb.com/products/Win32OpenSSL.ht
ml.

If you do, before installing the software, make a copy of
libeay32.dll and ssleay32.dll, which are
located in c:\windows\system32. Otherwise, these
files are overwritten during installation.

Microsoft Visual Studio 2005 Development environment tested.

http://sourceforge.net/projects/gsoap2/
http://www.slproweb.com/products/Win32OpenSSL.html
http://www.slproweb.com/products/Win32OpenSSL.html
https://github.com/CyberSource/cybersource-soap-toolkit/tree/master/sample_gsoap
https://ics2wsa.ic3.com/commerce/1.x/transactionProcessor
https://ics2wsa.in.ic3.com/commerce/1.x/transactionProcessor

Constructing SOAP with C++ and gSOAP 2.7.9c for Windows | 24

CyberSourceTransaction_1.26.wsdl

CyberSourceTransaction_1.26.xsd

3 To generate the header file, run the following script in the directory to which you downloaded
the WSDL and XSD files:

gsoap_directory\bin\wsdl2h -t gsoap_directory\WS\WS-typemap.dat -s
-o cybersource.h CyberSourceTransaction_N.NN.wsdl

The gsoap_directory is the directory from which you extracted gSoap. N.NN is the
version number of the WSDL file that you downloaded. This script creates the
cybersource.h header file. You may change the name of the file; however, the following
steps refer to the file as cybersource.h.

While you can safely ignore any warning messages, be sure that no two line items in your
requests have the same ID.

4 In the cybersource.h header file, add the following line to the Import section:

#import "WS-Header.h"

5 To generate the client source code, run this script:

gsoap_directory\bin\soapcpp2 -C -Igsoap_directory\import
cybersource.h

Constructing SOAP with C++ and gSOAP 2.7.9c for Windows | 25

Building the Windows Client

1 To create a non-CLR (Common Language Runtime) C++ project, open Visual Studio and
choose Project types > Visual C++ > Win32.

2 Enter a name and location for the project. This sample uses a Win32 Console Application with
gsoap_sample as the name of the solution. Click OK. When you start a new C++ project,
the Win32 Application Wizard appears.

Constructing SOAP with C++ and gSOAP 2.7.9c for Windows | 26

3 On the Application Settings page, uncheck the Precompiled header option and click
Finish. Your new project is created.

4 Choose Project > gsoap_sample Properties.

5 In the navigation pane, expand Configuration Properties > C/C++ and click Code
Generation.

6 Verify that the Debug and Release configurations are using the correct default runtime
libraries:

Constructing SOAP with C++ and gSOAP 2.7.9c for Windows | 27

a In the Configuration drop-down menu in the upper-left corner of the Property Pages,
choose Debug.

b In the properties listed in the main panel, verify that Runtime Library reads
Multi-threaded debug DLL (/MDd).

c Return to the Configuration drop-down menu in the upper-left corner and choose
Release.

Constructing SOAP with C++ and gSOAP 2.7.9c for Windows | 28

d In the properties displayed in the main panel, verify that Runtime Library reads
Multi-threaded DLL (/MD).

e Click OK. You are returned to the project.

7 In the project, replace the gsoap_sample.cpp file, included in the project, with the files in
the table below.

Before adding the source files to the plugin directory, you must change their file extensions
from .c to .cpp.

CyberSource sample sample.cpp

Generated by gSOAP soapC.cpp

soapClient.cpp

Included in gSOAP
package

gsoap_directory\dom.cpp*

gsoap_directory\stdsoap2.cpp

gsoap_directory\mod_gsoap\gsoap_win\wininet\gsoapWinInet.cpp

gsoap_directory\plugin\smdevp.cpp gsoap_directory\plugin\wsseapi.cpp *

gsoap_directory is the directory in which you downloaded and extracted gSOAP

Constructing SOAP with C++ and gSOAP 2.7.9c for Windows | 29

8 Add the following preprocessor definitions: WIN32 and WITH_OPENSSL

9 In the sidebar, navigate to Configuration Properties > C/C++ > General, and add the
following directories to your project's Additional Include Directories:

• gsoap_directory

• gsoap_directory\mod_gsoap\gsoap_win\wininet

• gsoap_directory\plugin

Constructing SOAP with C++ and gSOAP 2.7.9c for Windows | 30

• gsoap_directory\include

10 In the sidebar, navigate to Configuration Properties > Linker > Input, and add the following
libraries; in the upper Configuration field’s drop-down menu, choose each option in turn:

• Release: libeay32MD.lib and ssleay32MD.lib

Constructing SOAP with C++ and gSOAP 2.7.9c for Windows | 31

• Debug: libeay32MDd.lib and ssleay32MDd.lib

11 Add the following directory to your project's Additional Library Directories:
openssl_directory\lib\VC

12 In gsoap_directory\stdsoap2.cpp, find the following calls:

Constructing SOAP with C++ and gSOAP 2.7.9c for Windows | 32

ASN1_item_d2i

meth->d2i

13 In each call, cast the second parameter (&data) as const unsigned char **. The calls
now read:

ext_data = ASN1_item_d2i(NULL, (const unsigned char **) &data, ext->value->length,
ASN1_ITEM_ptr(meth->it)); ext_data = meth->d2i(NULL, (const unsigned char **) &data,
ext->value->length);

14 If you see the following compiler error in the stdsoap2.cpp file,

 error C2440: '=' : cannot convert from 'const char *' to 'char *

 cast the first parameter as char * as follows:

 t = strchr((char *) s, ',');

15 Inside soap_wsse_get_BinarySecurityTokenX509, find d2i_X509 in
gsoap_directory\plugin\wsseapi.cpp.

16 To the existing cast, add const as follows: cert = d2i_X509(NULL, (const unsigned
char**)&data, size); You can now test the client.

Building the Sample and Testing the Windows
Client
Context To test your client, follow these steps.

IMPORTANT: You must use separate transaction keys for test and production environments.

1 In sample.cpp, modify the values of the following variables:

• MERCHANT_ID

• TRANSACTION_KEY

• SERVER_URL

• LIB_VERSION ENVIRONMENT

Use LIB_VERSION only if you are using a different version of gSOAP.

2 Run the client.

Constructing SOAP with C++ and gSOAP 2.7.9c for Windows | 33

The code included in gSOAP causes the Visual C++ compiler to generate several warnings.
You can safely ignore these warnings.

The reply file contains the request result and all returned fields. When client testing is
finished, write the code to use the client application.

Modifying the Windows Client and Code
After you configure and test your application, you can modify it as needed:

IMPORTANT: You must use separate transaction keys for the test and production environments.

• To alternate between the test and production environments, change the URL assigned to
service.endpoint. In the sample file, set the SERVER_URL variable to the appropriate
value:

– Test environment: ics2wstesta.ic3.com

– Production environment: ics2wsa.ic3.com

– Production environment in India: ics2wsa.in.ic3.com

• To update the version of the CyberSource API, rebuild your client by following the steps in
Generating the Windows Client Code.

• To add or delete API fields, modify your source code.

Constructing SOAP with C++ and gSOAP 2.7.9e for Linux | 34

Constructing SOAP with C++ and
gSOAP 2.7.9e for Linux

This section describes how to construct SOAP messages to process transactions using
Linux.

Before starting this process, download and install the required third-party software. These
versions were tested:

The sample.cpp file provides the code to process your transactions.

Test the client application with the sample code files from
https://github.com/CyberSource/cybersource-soap-toolkit/tree/master/sample_gsoap.

To help understand and use the code, the files contain many comments and a sample
card authorization. Before using the files, be sure that you replace the generic values of
the variables with your own.

Makefile provides targets to easily create and build the sample client.

Preparing the Linux Development
Environment

1 Download the latest gSOAP package for Linux.

2 Open the package by running this command:

tar xvfz gsoap_linux_2.7.9e.tar.gz

Software Tested Description

Linux Kernel 2.6 Operating system version tested.

gSOAP 2.7.9e SOAP toolkit. You can download it
fromhttp://sourceforge.net/project/showfiles.php?group
_id=52781

OpenSSL 0.9.8 Current version of the toolkit implementing SSL.

Most Linux installations already contain this package. If
your package does not or if it has an old version,
download the source from http://www.openssl.org.

gcc 4.1.2 C/C++ compiler tested.

http://sourceforge.net/project/showfiles.php?group_id=52781
http://sourceforge.net/project/showfiles.php?group_id=52781
http://www.openssl.org
https://github.com/CyberSource/cybersource-soap-toolkit/tree/master/sample_gsoap

Constructing SOAP with C++ and gSOAP 2.7.9e for Linux | 35

3 At the same level as the gSOAP directory created in the previous step, create these items with
the appropriate command:

4 In the gsoap/stdsoap2.cpp file, find the following calls:

ASN1_item_d2i (occurs once)

meth-d2i (occurs twice)

5 In each call, cast the second parameter (&data) as const unsigned char **.

The calls should now read:

ext_data = ASN1_item_d2i(NULL, (const unsigned char **) &data ...

ext_data = meth->d2i(NULL, (const unsigned char **) &data ...

6 In the gsoap/plugin/wsseapi.c file, find cert = d2i_X509.

7 Add const to the second argument’s cast as follows:

cert = d2i_X509(NULL, (const unsigned char**)&data, size);

Generating the Linux Client Code
Context

The pre-built wsdl2h tool does not support SSL, so you cannot point the tool directly
to https://ics2wstesta.ic3.com or https://ics2wsa.ic3.com, or https://ics2wsa.in.ic3.com in India.

1 Download the latest WSDL and XSD files to the client directory from either of these URLs:

https://ics2wstesta.ic3.com/commerce/1.x/transactionProcessor

https://ics2wsa.ic3.com/commerce/1.x/transactionProcessor

In India: https://ics2wsa.in.ic3.com/commerce/1.x/transactionProcessor

Item Description Command:

client Directory for the client-related files
(Makefile and sample.cpp)

mkdir client

gsoap Symbolic link to your gSOAP
directory

ln -s <gsoap_path>
gsoapwhere <gsoap_path> is the
path to the gSOAP directory that you
created in Step 2.

https://ics2wstesta.ic3.com/commerce/1.x/transactionProcessor
https://ics2wsa.ic3.com/commerce/1.x/transactionProcessor
https://ics2wsa.in.ic3.com/commerce/1.x/transactionProcessor

Constructing SOAP with C++ and gSOAP 2.7.9e for Linux | 36

2 To ensure that Makefile finds the WSDL file that you downloaded in the previous step,
rename this file as CyberSourceTransaction.wsdl by removing the version number.

IMPORTANT: Do not rename the XSD file.

3 Run the make header script.

The following warning appears, which you can safely ignore. However, make sure that no two
line items in your requests have the same ID.

Warning: element 'xsd:unique' at level 2 was not recognized and will be ignored.

4 In the newly generated cybersource.h header file, add the following line to the Import
section:

#import "WS-Header.h"

5 Run the make source script.

Building the Sample and Testing the Linux
Client

1 In the sample.cpp file, modify the values of the following variables:

• MERCHANT_ID

• TRANSACTION_KEY

• SERVER_URL

• LIB_VERSION (if using a different gSOAP version)

• ENVIRONMENT

Do not use LIB_VERSION variable unless you are using a different version of gSOAP.

2 Run the make cybsdemo script. You can safely ignore the warning messages. cybsdemo
is now ready to use. The reply file contains the request result and all returned fields. When
client testing is finished, write the code to use the client application.

3 Run the sample by executing:

./cybsdemo

Constructing SOAP with C++ and gSOAP 2.7.9e for Linux | 37

Modifying Linux Client and Code
Context

After your application is configured and tested, you can modify it as needed:

IMPORTANT: You must use separate transaction keys for the test and production environments.

• To alternate between the test and production environments, change the URL assigned to the
service.endpoint. In the sample file, set the SERVER_URL variable to the appropriate value:

– Test environment: ics2wstesta.ic3.com

– Production environment: ics2wsa.ic3.com

– Production environment in India: ics2wsa.in.ic3.com

• To update the version of the CyberSource API, rebuild your client by following the steps in
Generating the Linux Client Code and Building the Sample and Testing the Linux Client.

• To add or delete API fields, modify your source code.

Constructing SOAP with C++ and gSOAP 2.7.9d for Mac OS X | 38

Constructing SOAP with C++ and
gSOAP 2.7.9d for Mac OS X

This section describes how to construct SOAP messages to process transactions with
CyberSource.

Before starting this process, download and install the required third-party software.
CyberSource tested these versions:

The sample.cpp file provides the code to process your transactions.

Test the client application with the sample code files from
https://github.com/CyberSource/cybersource-soap-toolkit/tree/master/sample_gsoap.

To help understand and use the code, the files contain many comments and a sample
card authorization. Before using the files, be sure to replace the generic values of the
variables with your own values.

Preparing the Development Environment

1 Download and unzip the latest gSOAP package for Mac OS X.

2 Open the package by running this command:

tar xvfz gsoap_macosx_S2.7.9d.tar.g

3 Under the same parent directory, create these items with the appropriate command:

Software Tested Description

Mac OS X Operating system version tested.

gSOAP 2.7.9d SOAP toolkit

Download and unzip the latest Mac OS X package from
http://sourceforge.net/projects/gsoap2/

openssl 0.9.7 OpenSSL version that is part of Mac OS X.

gcc 4.0.1 C/C++ compiler tested.

http://sourceforge.net/projects/gsoap2/
https://github.com/CyberSource/cybersource-soap-toolkit/tree/master/sample_gsoap

Constructing SOAP with C++ and gSOAP 2.7.9d for Mac OS X | 39

Generating the Mac Client Code
Context The pre-built wsdl2h tool does not support SSL, so you cannot point the tool directly to
https://ics2wstesta.ic3.com or https://ics2wsa.ic3.com, or https://ics2wsa.in.ic3.com in India.

1 Download the latest WSDL and XSD files to the client directory from either of the following
URLs:

https://ics2wstesta.ic3.com/commerce/1.x/transactionProcessor

https://ics2wsa.ic3.com/commerce/1.x/transactionProcessor

In India: https://ics2wsa.in.ic3.com/commerce/1.x/transactionProcessor

2 To ensure that the Makefile file finds the WSDL file that you downloaded in the previous
step, rename it as CyberSourceTransaction.wsdl by removing the version number.

IMPORTANT: Do not rename the XSD file.

3 Run the make header script.

You will receive warning messages, which you can safely ignore. However, ensure that no
two line items in your requests have the same ID.

4 In the newly generated the cybersource.h header file, add the following line to the Import
section:

#import "WS-Header.h"

5 Run the make source script.

Item Description Command:

client Directory for the client-related files
(Makefile and sample.cpp)

mkdir client

gsoap Symbolic link to your gSOAP
directory

gsoap -> gsoap-macosx-2.7

https://ics2wstesta.ic3.com/commerce/1.x/transactionProcessor
https://ics2wsa.ic3.com/commerce/1.x/transactionProcessor
https://ics2wsa.in.ic3.com/commerce/1.x/transactionProcessor

Constructing SOAP with C++ and gSOAP 2.7.9d for Mac OS X | 40

Building the Sample and Testing the Mac Client

1 In the sample.cpp file, modify the values of the following variables:

• MERCHANT_ID

• TRANSACTION_KEY

• SERVER_URL

• LIB_VERSION

• ENVIRONMENT

Do not use theLIB_VERSION variable unless you are using a different version of gSOAP.

2 Run the make cybsdemo script. Ignore the warning messages. cybsdemo is now ready to
use.

3 Run the sample by executing:

./cybsdemo

The reply file contains the request result and all returned fields. When client testing is
finished, write the code to use the client application.

Modifying the Mac Client and Code
Context

After your application is configured and tested, you can modify it as needed:

IMPORTANT: You must use separate transaction keys for the test and production environments.

• To alternate between the test and production environments, change the URL assigned to the
service.endpoint. In the sample file, set the SERVER_URL variable to the appropriate value:

– Test environment: ics2wstesta.ic3.com

– Production environment: ics2wsa.ic3.com

– Production environment in India: ics2wsa.in.ic3.com

• To update the version of the CyberSource API, rebuild your client by following the steps in
Generating the Mac Client Code and Building the Sample and Testing the Mac Client.

• To add or delete API fields, modify your source code.

Constructing SOAP with Apache Axis and WSS4J | 41

Constructing SOAP with Apache Axis
and WSS4J

This section describes how to construct SOAP messages to process transactions with
CyberSource using Apache Axis and WSS4J.

Before starting this process, download and install the required third-party software.
CyberSource tested these versions:

The Sample.java: sample file provides the code to process your transactions.

Test the client application with the sample code files available from
https://github.com/CyberSource/cybersource-soap-toolkit/tree/master/sample_axis_wss4j
.

To help understand and use the code, the files contain many comments and a sample
card authorization. Before using the files, replace the generic values of the variables with
your own.

The SamplePWCallback.java: sample file is a Password Callback Handler, which
provides the password to WSS4J.

The SampleDeploy.wsdd: file is a sample deployment descriptor file used by WSS4J.

Software Tested Description

• Windows XP Professional with
SP

• Linux

• Solaris

Operating systems tested

JDK 1.5 Java Development Kit

Apache Axis 1.4 SOAP toolkit

Download and unzip the latest package from http://ws.apache.org/axis

Apache WSS4J 1.5.1 WS-Security package

Download and unzip the latest package from http://ws.apache.org/wss4

 Apache XML Security 1.4.0 XML security package

Download the latest package from
http://santuario.apache.org/download.html and extract
xmlsec-N.N.N.jar

activation.jar JDK JavaBeans Activation Framework add-on that you can download from
http://www.oracle.com/technetwork/java/jaf11-139815.html

mail.jar JDK Java Mail add-on that you can download from
http://java.sun.com/products/javamail/

http://ws.apache.org/axis
http://ws.apache.org/wss4
http://santuario.apache.org/download.html
http://santuario.apache.org/download.html
http://www.oracle.com/technetwork/java/jaf11-139815.html
http://java.sun.com/products/javamail/
https://github.com/CyberSource/cybersource-soap-toolkit/tree/master/sample_axis_wss4j

Constructing SOAP with Apache Axis and WSS4J | 42

Generating and Building the Stubs

1 From each of the following packages, add these items to your classpath:

• The current directory (.)

• These files:

2 From a command prompt, go to the directory in which you downloaded the CyberSource
sample code Sample.java.

3 To generate the stubs, execute this command without line breaks:

java org.apache.axis.wsdl.WSDL2Java -p com.cybersource.stub
https://ics2wstesta.ic3.com/commerce/1.x/transactionProcessor/Cyber
SourceTransaction_N.NN.wsdl

where:

com.cybersource.stub is the package name that will be used for the generated classes.
You can choose a different package name if you wish. However, the rest of the steps and the
sample code refer to this value.

N.NN is the CyberSource API version. Find the latest version here:
https://ics2wstesta.ic3.com/commerce/1.x/transactionProcessor

4 To compile the source code, execute this command:

javac com/cybersource/stub/*.java

Package Files

Apache Axis • axis.jar

• commons-discovery-0.2.jar

• commons-logging-1.0.4.jar

• jaxrpc.jar

• log4j-1.2.8.jar

• saaj.jar

• wsdl4j-1.5.1.jar

Apache WSS4J wss4j-1.5.1.jar

Apache XML Security xmlsec-1.4.0.jar

JDK JavaBeans Activation Framework activation.jar

JDK Java Mail mail.jar

https://ics2wstesta.ic3.com/commerce/1.x/transactionProcessor

Constructing SOAP with Apache Axis and WSS4J | 43

5 Create a jar file by using the compiled classes:

jar cf cybersource.jar com/cybersource/stub/*.class

6 Add the newly created cybersource.jar file to your classpath.

Building the Sample and Testing the Client
Context

To build the sample and test your client, modify the variables in the sample files, and run the
application.

1 In the Sample.java file, modify the values of MERCHANT_ID.

2 In the SamplePWCallback.java file, modify the value of TRANSACTION_KEY.

3 Compile the samples as follows:

javac Sample.java SamplePWCallback.java

4 Run the sample as follows:

java -Daxis.ClientConfigFile=SampleDeploy.wsdd Sample

The reply file contains the request result and all returned fields. When testing the client is
finished, write the code to use the client application.

Modifying the Client and Code
After your application is configured and tested, you can modify it as needed:

IMPORTANT: You must use separate transaction keys for the test and production environments.

• To alternate between the test and production environments, set SERVER_URL to the
appropriate value:

– Test environment: ics2wstesta.ic3.com

– Production environment: ics2wsa.ic3.com

– Production environment in India: ics2wsa.in.ic3.com

• To update the version of the CyberSource API, rebuild the client by following the steps in
Generating and Building the Stubs.

• To add or delete API fields, modify your source code.

	Recent Revisions to This Document
	Configuring SOAP Toolkits for Web Services
	Supported Toolkits
	Destination URLs for SOAP Messages
	Transaction Key
	SOAP Message Sample

	Constructing SOAP with PHP 5.2.1
	Installing PHP on Windows
	Installing PHP on Linux
	Building and Running the Sample
	Modifying Your Script

	Constructing SOAP with .NET 2.0 and WSE 3.0
	Preparing Your Application
	Sending Requests to CyberSource
	Building the Sample and Testing the Net Client
	Modifying the .NET Client and Code

	Constructing SOAP with .NET 3.0 (WCF) and Later Versions
	Creating and Testing the .NET 3.0 Client Using Sample Code
	Modifying the .NET 3.0 Client and Code

	Constructing SOAP with C++ and gSOAP 2.7.9c for Windows
	Generating the Windows Client Code
	Building the Windows Client
	Building the Sample and Testing the Windows Client
	Modifying the Windows Client and Code

	Constructing SOAP with C++ and gSOAP 2.7.9e for Linux
	Preparing the Linux Development Environment
	Generating the Linux Client Code
	Building the Sample and Testing the Linux Client
	Modifying Linux Client and Code

	Constructing SOAP with C++ and gSOAP 2.7.9d for Mac OS X
	Preparing the Development Environment
	Generating the Mac Client Code
	Building the Sample and Testing the Mac Client
	Modifying the Mac Client and Code

	Constructing SOAP with Apache Axis and WSS4J
	Generating and Building the Stubs
	Building the Sample and Testing the Client
	Modifying the Client and Code

